login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060850 Array of the coefficients A(n,k) in the expansion of Product_{i>=1} 1/(1-x^i)^n  = Sum_{k>=0} A(n,k)*x^k, n >= 1, k >= 0. 5
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 9, 10, 5, 1, 5, 14, 22, 20, 7, 1, 6, 20, 40, 51, 36, 11, 1, 7, 27, 65, 105, 108, 65, 15, 1, 8, 35, 98, 190, 252, 221, 110, 22, 1, 9, 44, 140, 315, 506, 574, 429, 185, 30, 1, 10, 54, 192, 490, 918, 1265, 1240, 810, 300, 42, 1, 11, 65, 255 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Table read by antidiagonals: entry (n,k) gives number of partitions of n objects into parts of k kinds. - Franklin T. Adams-Watters, Dec 28 2006

LINKS

Table of n, a(n) for n=1..70.

FORMULA

G.f. A(n;x) for n-th row satisfies A(n;x) = Sum_{k=1..n} A000041(k-1)*A(n-k;x)*x^(k-1), A(0;x) = 1. - Vladeta Jovovic, Jan 02 2004

EXAMPLE

Table (row k, k >= 0: number of partitions of n, n >= 0, into parts of k kinds):

Array begins:

=======================================================================

k\n| 0   1   2    3     4     5      6       7       8       9       10

---|-------------------------------------------------------------------

1  | 1   1   2    3     5     7     11      15      22      30       42

2  | 1   2   5   10    20    36     65     110     185     300      481

3  | 1   3   9   22    51   108    221     429     810    1479     2640

4  | 1   4  14   40   105   252    574    1240    2580    5180    10108

5  | 1   5  20   65   190   506   1265    2990    6765   14725    31027

6  | 1   6  27   98   315   918   2492    6372   15525   36280    81816

7  | 1   7  35  140   490  1547   4522   12405   32305   80465   192899

8  | 1   8  44  192   726  2464   7704   22528   62337  164560   417140

9  | 1   9  54  255  1035  3753  12483   38709  113265  315445   841842

10 | 1  10  65  330  1430  5512  19415   63570  195910  573430  1605340

11 | 1  11  77  418  1925  7854  29183  100529  325193  997150  2919411

  ...

Triangle (row n, n >= 0: number of partitions of n into parts of n - k kinds, 0 <= k <= n) (antidiagonals of above table) (parenthesized last term on each row, which would correspond to row k = 0 in above table)

Triangle begins: (column k: n - k kinds of parts)

===================================

n\k| 0   1   2   3   4   5   6   7

---+-------------------------------

0  |(1)

1  | 1, (0)

2  | 1,  1, (0)

3  | 1,  2,  2, (0)

4  | 1,  3,  5,  3, (0)

5  | 1,  4,  9, 10,  5, (0)

6  | 1,  5, 14, 22, 20,  7, (0)

7  | 1,  6, 20, 40, 51, 36, 11, (0)

  ...

MATHEMATICA

t[n_, k_] := CoefficientList[ Series[ Product[1/(1 - x^i)^n, {i, k}], {x, 0, k}], x][[k]]; (* Robert G. Wilson v, Aug 08 2018 *)

t[n_, k_]; = IntegerPartitions[n, {k}]; Table[ t[n - k + 1, k], {n, 12}, {k, n}] // Flatten (* Robert G. Wilson v, Aug 08 2018 *)

CROSSREFS

Cf. A067687 (table antidiagonal sums, triangle row sums).

Rows (table), diagonals (triangle): A000041, A000712, A000716, A023003-A023021, A006922.

Columns (table, triangle): A000012, A001477, A000096, A006503, A006504.

Sequence in context: A086350 A239830 A140767 * A208336 A038137 A073133

Adjacent sequences:  A060847 A060848 A060849 * A060851 A060852 A060853

KEYWORD

tabl,nonn,easy

AUTHOR

Bo T. Ahlander (ahlboa(AT)isk.kth.se), May 03 2001

EXTENSIONS

More terms from Vladeta Jovovic, Jan 02 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 01:29 EST 2019. Contains 320364 sequences. (Running on oeis4.)