This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038137 Reflection of A037027: T(n,m) = U(n,n-m), m=0..n, where U is as in A037027. 9
 1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 9, 10, 5, 1, 5, 14, 22, 20, 8, 1, 6, 20, 40, 51, 38, 13, 1, 7, 27, 65, 105, 111, 71, 21, 1, 8, 35, 98, 190, 256, 233, 130, 34, 1, 9, 44, 140, 315, 511, 594, 474, 235, 55, 1, 10, 54, 192, 490, 924, 1295, 1324, 942, 420, 89, 1, 11, 65, 255 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (2,2). - Joerg Arndt, Jul 01 2011 The n-th diagonal D(n)={T(n,0),T(n+1,1),...,T(n+m,m),...} of the triangle has generating function F(x)=1/(1-x-x^2)^(n+1), n=0,1,2,.... - L. Edson Jeffery, Mar 20 2011 Let p(n,x) denote the Fibonacci polynomial, defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x).  Let q(n,x) be the numerator polynomial of the rational function p(n, 1 + 1/x).  The coefficients of the polynomials q(n,x)  are given by A038137; e.g., p(5,x) = 1 + 3*x^2 + x^4 gives q(5,x) = 1 + 4*x + 9*x^2 + 10*x^2 + 5*x^4. - Clark Kimberling, Nov 04 2013 LINKS Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened P. Moree, Convoluted convolved Fibonacci numbers FORMULA G.f.: 1/(1-x-x*y-x^2*y^2); T(n,k) = sum{j=0..n, C((n+j)/2, j)*(1+(-1)^(n+j))*C(j, n-k)/2}. - Paul Barry, Oct 24 2005 T(n,k) = T(n-1,k)+T(n-1,k-1)+T(n-2,k-2), T(n,k)=0 if n<0 or if n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.