|
|
A060795
|
|
Write product of first n primes as x*y with x<y and x maximal; sequence gives value of x.
|
|
4
|
|
|
1, 2, 5, 14, 42, 165, 714, 3094, 14858, 79534, 447051, 2714690, 17395070, 114371070, 783152070, 5708587335, 43848093003, 342444658094, 2803119896185, 23619540863730, 201813981102615, 1793779293633437, 16342050964565645, 154170926013430326, 1518409177581024365
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Or, lower central divisor of n-th primorial.
Subsequence of A005117 (squarefree numbers). - Michel Marcus, Feb 22 2016
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..33
|
|
FORMULA
|
a(n) = A060775(A002110(n)). - Labos Elemer, Apr 27 2001
|
|
EXAMPLE
|
n=8: q(8)=2*3*5*7*11*13*17*19=9699690. Its 128th and 129th divisors are {3094,3135}: a(8)=3094 and 3094 < A000196(9699690)=3114<3135. [Corrected by Colin Barker, Oct 22 2010]
2*3*5*7 = 210 = 14*15 with difference of 1, so a(4) = 14.
|
|
MAPLE
|
F:= proc(n) local P, N, M;
P:= {seq(ithprime(i), i=1..n)};
N:= floor(sqrt(convert(P, `*`)));
M:= map(convert, combinat:-powerset(P), `*`);
max(select(`<=`, M, N))
end proc:
map(F, [$1..20]); # Robert Israel, Feb 22 2016
|
|
MATHEMATICA
|
a[n_] := (m = Times @@ Prime[Range[n]] ; dd = Divisors[m]; dd[[Length[dd]/2 // Floor]]); Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Oct 15 2016 *)
|
|
PROG
|
a(n) = my(m=prod(i=1, n, prime(i))); divisors(m)[numdiv(m)\2]; \\ Michel Marcus, Feb 22 2016
|
|
CROSSREFS
|
Cf. A061055, A061056, A061057, A061058, A061059, A061060, A061030, A061031, A061032, A061033, A060755, A000196, A033677.
Sequence in context: A047046 A063545 A061058 * A071743 A071747 A071751
Adjacent sequences: A060792 A060793 A060794 * A060796 A060797 A060798
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Apr 27 2001
|
|
EXTENSIONS
|
More terms from Ed Pegg Jr, May 28 2001
Terms 16 through 23 computed by Jud McCranie, Apr 15 2000
a(24) and a(25) from Robert Israel, Feb 22 2016
a(25) corrected by Jean-François Alcover, Oct 15 2016
|
|
STATUS
|
approved
|
|
|
|