login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060796 Upper central divisor of n-th primorial. 4
2, 3, 6, 15, 55, 182, 715, 3135, 15015, 81345, 448630, 2733549, 17490603, 114388729, 785147363, 5708795638, 43850489690, 342503171205, 2803419704514, 23622001517543, 201817933409378, 1793779635410490, 16342166369958702 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also: Write product of first n primes as x*y with x<y and x maximal; sequence gives value of y. This was sequence A061059, which is a duplicate of this sequence. Indeed, p(n)# = primorial(n) = A002110(n) is never a square, it has N=2^n distinct divisors. Since this is an even number, the N divisors can be grouped in N/2 pairs {d(k), d(N+1-k)} with product equal to p(n)#. Obviously, one of the two is always smaller and one is larger than sqrt(p(n)#). This sequence gives the (2^(n-1)+1)-th divisor, which is the smallest one larger than sqrt(p(n)#). - M. F. Hasler, Sep 20 2011

Further terms (calculated from A182987):

a(24) = 154171363634898185,

a(25) = 1518410187442699518,

a(26) = 15259831781575946565,

a(27) = 154870358790203939190,

a(28) = 1601991507050573600715,

a(29) = 16725281357261594271714,

a(30) = 177792170427340904920562,

a(31) = 2003615968659851168928690,

a(32) = 22932432917001897051097491,

a(33) = 268417245982598363846820345,

a(34) = 3164592660873444717893657954,

a(35) = 38628776202993992477961504201,

a(37) = 5947702665851804982553152089030. - M. F. Hasler, Sep 20 2011

LINKS

Table of n, a(n) for n=1..23.

FORMULA

a(n) = A033677(A002110(n)).

EXAMPLE

n=8, q(8)=2.3.5.7.11.13.17.19=9699690. Its 128th and 129th divisors are {3094,3135}: a(8)=3135, and 3094 < A000196(9699690) = 3114 < 3135. [Corrected by M. F. Hasler, Sep 20 2011]

MATHEMATICA

k = 1; Do[k *= Prime[n]; l = Divisors[k]; x = Length[l]; Print[l[[x/2 + 1]]], {n, 1, 24}] (*R. Propper, 2005*)

PROG

(PARI) A060796(n) = divisors(prod(k=1, n, prime(k)))[2^(n-1)+1]   \\ M. F. Hasler, Sep 20 2011

CROSSREFS

Cf. A060755, A000196, A033677.

Cf. A061055, A061056, A061057, A061058, A061059, A061060, A061030, A061031, A061032, A061033.

Sequence in context: A121688 A082094 * A061059 A059842 A001529 A069354

Adjacent sequences:  A060793 A060794 A060795 * A060797 A060798 A060799

KEYWORD

nonn,changed

AUTHOR

Labos Elemer, Apr 27 2001

EXTENSIONS

More terms from Ryan Propper, Jul 25 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 14:49 EST 2016. Contains 278781 sequences.