login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060285 Number of partitions of n objects of 2 colors with parts size >1. 2
1, 0, 3, 4, 11, 18, 42, 70, 144, 248, 466, 802, 1442, 2444, 4247, 7116, 12030, 19878, 32938, 53670, 87429, 140680, 225815, 359100, 569157, 895224, 1402941, 2184662, 3388915, 5228458, 8035921, 12291710, 18732318, 28425342, 42981877, 64740330 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from Vaclav Kotesovec)

N. J. A. Sloane, Transforms

FORMULA

Euler transform of sequence [0, 3, 4, 5, 6, ...].

G.f.: Product_{k=2..infinity} 1/(1-x^k)^(k+1).

From Vaclav Kotesovec, Mar 09 2015: (Start)

For n>=2, a(n) = A005380(n-2) - 2*A005380(n-1) + A005380(n).

a(n) ~ 2^(1/36) * Zeta(3)^(37/36) * exp(1/12 - Pi^4/(432*Zeta(3)) + Pi^2 * n^(1/3) / (3*2^(4/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 3^(1/2) * Pi * n^(55/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .

a(n) ~ (2*Zeta(3))^(2/3) * A005380(n) / n^(2/3).

(End)

MATHEMATICA

nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(k+1), {k, 2, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 04 2015 *)

CROSSREFS

Cf. (row sums of) A060244, A054225, A005380.

Sequence in context: A027222 A026380 A030225 * A025079 A222770 A036652

Adjacent sequences:  A060282 A060283 A060284 * A060286 A060287 A060288

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Mar 23 2001

EXTENSIONS

Edited by Christian G. Bower, Jan 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 11:17 EDT 2019. Contains 323539 sequences. (Running on oeis4.)