login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060244 Triangle a(n,k) of bipartite partitions of n objects into parts >1, k of which are black. 8
1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 4, 4, 3, 2, 4, 5, 8, 8, 8, 5, 4, 4, 7, 11, 13, 13, 11, 7, 4, 7, 11, 19, 22, 26, 22, 19, 11, 7, 8, 15, 26, 35, 40, 40, 35, 26, 15, 8, 12, 22, 41, 54, 69, 70, 69, 54, 41, 22, 12, 14, 30, 56, 81, 104, 116, 116, 104, 81, 56, 30, 14, 21, 42 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,11

REFERENCES

P. A. MacMahon, Memoir on symmetric functions of the roots of systems of equations, Phil. Trans. Royal Soc. London, 181 (1890), 481-536; Coll. Papers II, 32-87.

LINKS

Table of n, a(n) for n=0..79.

FORMULA

G.f.: Product_{ i=2..infinity, j=0..i} 1/(1-x^(i-j)*y^j).

EXAMPLE

Series ends ... + 2*x^5 + 3*x^4*y + 4*x^3*y^2 + 4*x^2*y^3 + 3*x*y^4 + 2*y^5 + 2*x^4 + 2*x^3*y + 3*x^2*y^2 + 2*x*y^3 + 2*y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + x*y + y^2 + 1.

1;

0, 0;

1, 1, 1;

1, 1, 1, 1;

2, 2, 3, 2, 2;

...

MAPLE

read transforms; t1 := mul( mul( 1/(1-x^(i-j)*y^j), j=0..i), i=2..11): SERIES2(t1, x, y, 7);

MATHEMATICA

max = 12; gf = Product[1/(1 - x^(i - j)*y^j), {i, 2, max}, {j, 0, i}]; se = Series[gf, {x, 0, max}, {y, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[se, {x, 0, n}, {y, 0, k}]; Flatten[ Table[ t[n - k, k], {n, 0, max}, {k, 0, n}]] (* Jean-Fran├žois Alcover, after Maple *)

CROSSREFS

Columns 0-6: A002865, A000041, A024786, A291553, A291589, A291590, A291596.

Row sums: A060285.

Cf. A005380, A054225.

Sequence in context: A085962 A160821 A300225 * A072814 A196229 A191302

Adjacent sequences:  A060241 A060242 A060243 * A060245 A060246 A060247

KEYWORD

nonn,nice,tabl,easy

AUTHOR

N. J. A. Sloane, Mar 22 2001

EXTENSIONS

More terms from Vladeta Jovovic, Mar 23 2001

Edited by Christian G. Bower, Jan 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 04:00 EDT 2019. Contains 322406 sequences. (Running on oeis4.)