This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054225 Triangle read by rows: row n (n>=0) gives the number of partitions of (n,0), (n-1,1), (n-2,2), ..., (0,n) respectively into sums of pairs. 30
 1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 7, 9, 7, 5, 7, 12, 16, 16, 12, 7, 11, 19, 29, 31, 29, 19, 11, 15, 30, 47, 57, 57, 47, 30, 15, 22, 45, 77, 97, 109, 97, 77, 45, 22, 30, 67, 118, 162, 189, 189, 162, 118, 67, 30, 42, 97, 181, 257, 323, 339, 323, 257, 181, 97, 42, 56, 139, 267, 401, 522, 589, 589, 522, 401, 267, 139, 56 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS By analogy with ordinary partitions (A000041). The empty partition gives T(0,0)=1 by definition. A054225 and A201377 give partitions of pairs into sums of distinct pairs. Parts (i,j) are "positive" in the sense that min {i,j} >= 0 and max {i,j} >0. The empty partition of (0,0) is counted as 1. Or, triangle T(n,k) of bipartite partitions of n objects, k of which are black. Or, number of ways to factor p^(n-k)*q^k where p and q are distinct primes. In the paper by F. C. Auluck: "On partitions of bipartite numbers", p.74, in the formula for fixed m there should be factor 1/m!. The correct asymptotic formula is p(m, n) ~ (sqrt(6*n)/Pi)^m * exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*m!*n). - Vaclav Kotesovec, Feb 01 2016 REFERENCES M. S. Cheema, Tables of partitions of Gaussian integers, National Institute of Sciences of India, New Delhi, 1956. LINKS Alois P. Heinz, Rows n = 0..75, flattened F. C. Auluck, On partitions of bipartite numbers, Proc. Cambridge Philos. Soc. 49, (1953). 72-83. F. C. Auluck, On partitions of bipartite numbers, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 49, Issue 01, January 1953, pp. 72-83. (full article) P. A. MacMahon, Memoir on symmetric functions of the roots of systems of equations, Phil. Trans. Royal Soc. London, 181 (1890), 481-536; Coll. Papers II, 32-87. Reinhard Zumkeller, Haskell programs for A201376, A054225, A201377, A054242 FORMULA G.f.: Product_{ i=1..infinity, j=0..i} 1/(1-x^(i-j)*y^j). Series ends ... + 7*x^5 + 12*x^4*y + 16*x^3*y^2 + 16*x^2*y^3 + 12*x*y^4 + 7*y^5 + 5*x^4 + 7*x^3*y + 9*x^2*y^2 + 7*x*y^3 + 5*y^4 + 3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3 + 2*x^2 + 2*x*y + 2*y^2 + x + y + 1. EXAMPLE The second row (n=1) is 1,1 since (1,0) and (0,1) each have a single partition. The third row (n=2) is 2, 2, 2 from (2,0) = (1,0)+(1,0), (1,1) = (1,0)+(0,1), (0,2) = (0,1)+(0,1). In the fourth row (n=3), T(2,1)=4 from (2,1) = (2,0)+(0,1) = (1,0)+(1,1) = (1,0)+(1,0)+(0,1). The triangle begins:    1;    1,  1;    2,  2,  2;    3,  4,  4,  3;    5,  7,  9,  7,   5;    7, 12, 16, 16,  12,  7;   11, 19, 29, 31,  29, 19, 11;   15, 30, 47, 57,  57, 47, 30, 15;   22, 45, 77, 97, 109, 97, 77, 45, 22;   ... A further example: T(2,2) = 9: [(2,2)], [(2,1),(0,1)], [(2,0),(0,2)], [(2,0),(0,1),(0,1)], [(1,2),(1,0)], [(1,1),(1,1)], [(1,1),(1,0),(0,1)], [(1,0),(1,0),(0,2)], [(1,0),(1,0),(0,1),(0,1)]. MAPLE read transforms; t1 := mul( mul( 1/(1-x^(i-j)*y^j), j=0..i), i=1..11): SERIES2(t1, x, y, 6); MATHEMATICA rows = 11; se = Series[ Product[ 1/(1-x^(n-k)*y^k), {n, 1, rows}, {k, 0, n}], {x, 0, rows}, {y, 0, rows}]; coes = CoefficientList[ se, {x, y}]; Flatten[ Table[ coes[[n-k+1, k]], {n, 1, rows+1}, {k, 1, n}]] (* Jean-François Alcover, Nov 21 2011, after g.f. *) p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; t[n_, k_] := b[p^(n-k)*q^k, p^(n-k)*q^k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *) PROG (PARI) {T(n, k) = if( n<0 || k<0, 0, polcoeff( polcoeff( prod( i=1, n, prod( j=0, i, 1 / (1 - x^i * y^j), 1 + x * O(x^n))), n), k))} /* Michael Somos, Apr 19 2005 */ (Haskell) see Zumkeller link. CROSSREFS See A201376 for the same triangle formatted in a different way. Columns 0-10: A000041, A000070, A000291, A000412, A000465, A000491, A002755-A002759. Row sums: A005380. a(2n, n): A002774. a(n, [n/2]): A091437. Cf. A060244. The outer edges are T(n,0) = T(0,n) = A000041(n). A054242 gives partitions into sums of distinct pairs. Sequence in context: A193921 A074829 A060243 * A228482 A091822 A173022 Adjacent sequences:  A054222 A054223 A054224 * A054226 A054227 A054228 KEYWORD easy,nonn,tabl,nice,look AUTHOR Marc LeBrun, Feb 04 2000 EXTENSIONS Entry revised by N. J. A. Sloane, Nov 30 2011, to incorporate corrections provided by Reinhard Zumkeller, who also contributed the alternative version A201376. Once the errors were corrected, this sequence coincided with A060243, due to N. J. A. Sloane, Mar 22 2001, which included edits by Vladeta Jovovic, Mar 23 2001, and Christian G. Bower, Jan 08 2004. The two entries have now been merged. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.