login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058582
Expansion of (1+3*x+4*x^2)/(1-4*x^2+4*x^4).
2
1, 3, 8, 12, 28, 36, 80, 96, 208, 240, 512, 576, 1216, 1344, 2816, 3072, 6400, 6912, 14336, 15360, 31744, 33792, 69632, 73728, 151552, 159744, 327680, 344064, 704512, 737280, 1507328, 1572864, 3211264, 3342336, 6815744, 7077888
OFFSET
0,2
COMMENTS
Is a(n) the (n-1)-st elementary symmetric function of first n terms of (2,1,2,1,2,1,2,...)? See the Mathematica section. [Clark Kimberling, Dec 29 2011]
FORMULA
a(n) = A032766(n+1)*A016116(n). - Philippe Deléham, Oct 11 2014
EXAMPLE
a(0) = 1*1 = 1, a(1) = 3*1 = 3, a(2) = 4*2 = 8, a(3) = 6*2 = 12, a(4) = 7*4 = 28, a(5) = 9*4 = 36, a(6) = 10*8 = 80, a(7) = 12*8 = 96, a(8) = 13*16 = 208, ... - Philippe Deléham, Oct 11 2014
MATHEMATICA
f[k_] := 1 + Mod[k, 2]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 33}]
(* Clark Kimberling, Dec 29 2011 *)
PROG
(PARI) Vec((1+3*x+4*x^2)/(1-4*x^2+4*x^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
a(n)=T(n, 1), array T as in A064861.
Sequence in context: A092954 A114803 A083171 * A178720 A027292 A032304
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 26 2000
STATUS
approved