login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064861 Triangle of Sulanke numbers: a(m,n)=a(m,n-1)+a(m-1,n) for m+n even and a(m,n)=a(m,n-1)+2a(m-1,n) for m+n odd. 8
1, 1, 2, 1, 3, 2, 1, 5, 8, 4, 1, 6, 13, 12, 4, 1, 8, 25, 38, 28, 8, 1, 9, 33, 63, 66, 36, 8, 1, 11, 51, 129, 192, 168, 80, 16, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 14, 86, 304, 681, 1002, 968, 592, 208, 32, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 17 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

When A064861 is regarded as a triangle read by rows, this is [1,0,-1,0,0,0,0,0,0,...] DELTA [2,-1,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 . - Philippe Deléham, Dec 14 2008

REFERENCES

R. A. Sulanke, Problem 10894, Amer. Math. Monthly 108, (2001), p. 770.

LINKS

Reinhard Zumkeller, Rows n = 0..125 of table, flattened

M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From N. J. A. Sloane, Feb 13 2013

M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5

C. de Jesus Pita Ruiz Velasco, Convolution and Sulanke Numbers, JIS 13 (2010) 10.1.8

FORMULA

G.f.: sum_{m=0}^infinity sum_{n=0}^infinity a_{m, n}t^m s^n = A(t,s) = (1+2*t+s)/(1-2*t^2-s^2-3*s*t)

EXAMPLE

Table begins:

1 1 1 1 1 1 1 1 ...

2 3 5 6 8 9 11 ...

2 8 13 25 33 51 ...

4 12 38 63 129 ...

4 28 66 192 ...

MAPLE

A064861 := proc(n, k) option remember; if n = 1 then 1; elif k = 0 then 0; else procname(n, k-1)+(3/2-1/2*(-1)^(n+k))*procname(n-1, k); fi; end;

seq(seq(A064861(i, j-i), i=1..j-1), j=1..19);

MATHEMATICA

max = 12; se = Series[(1 + 2*x + y*x)/(1 - 2*x^2 - y^2*x^2 - 3*y*x^2), {x, 0, max}, {y, 0, max}]; cc = CoefficientList[se, {x, y}]; Flatten[ Table[ cc[[n, k]], {n, 1, max}, {k, n, 1, -1}]] (* Jean-François Alcover, Oct 21 2011, after g.f. *)

PROG

(PARI) a(n, m)=if(n<0 || m<0, 0, polcoeff(polcoeff((1+2*x+y*x)/(1-2*x^2-y^2*x^2-3*y*x^2)+O(x^(n+m+1)), n+m), m))

(Haskell)

a064861 n k = a064861_tabl !! n !! k

a064861_row n = a064861_tabl !! n

a064861_tabl = map fst $ iterate f ([1], 2) where

f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 3 - z)

-- Reinhard Zumkeller, May 01 2014

CROSSREFS

Cf. central Delannoy numbers a(n, n)=A001850(n), Delannoy numbers (same main diagonal): a(n, n)=A008288(n, n), a(n-1, n)=A002003(n), a(n, n+1)=A002002(n), a(n, 1)=A058582(n), apparently a(n, n+2)=A050151(n).

Sequence in context: A061260 A152097 A119442 * A191528 A191788 A070979

Adjacent sequences:  A064858 A064859 A064860 * A064862 A064863 A064864

KEYWORD

nonn,tabl,nice

AUTHOR

Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Oct 10, 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 11:12 EST 2018. Contains 299564 sequences. (Running on oeis4.)