login
A057870
Number of singular points on n-th order Chmutov surface.
1
0, 1, 3, 14, 28, 57, 93, 154, 216, 321, 425, 576, 732, 949, 1155, 1450, 1728, 2097, 2457, 2926, 3360, 3941, 4477, 5160, 5808, 6625, 7371, 8334, 9212, 10305, 11325, 12586, 13728, 15169, 16473, 18072, 19548, 21349, 22971, 24986, 26800, 29001
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Chmutov Surface. [Gives a formula]
FORMULA
Appears to satisfy a 13-term linear recurrence. - Ralf Stephan, Mar 07 2004
Conjectures from Colin Barker, Jan 02 2020: (Start)
G.f.: x^2*(1 + 3*x + 12*x^2 + 21*x^3 + 27*x^4 + 28*x^5 + 31*x^6 + 25*x^7 + 18*x^8 + 11*x^9 + 3*x^10) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)^2).
a(n) = 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5) + a(n-6) + a(n-7) - 2*a(n-8) - a(n-9) + a(n-10) + 2*a(n-11) - a(n-13) for n>13.
(End)
CROSSREFS
Sequence in context: A032041 A031002 A085762 * A256053 A354041 A031049
KEYWORD
nonn
STATUS
approved