OFFSET
1,1
COMMENTS
REFERENCES
E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford Univ. Press, 1939, p. 135.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..125
J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function
EXAMPLE
Sum_{k>0} 1/(tanh(k*Pi)k^3) = Pi^3*7/180;
Sum_{k>0} 1/(tanh(k*Pi)k^7) = Pi^7*19/56700.
MATHEMATICA
Denominator[Table[2^(k-1)/(k+1)! Sum[(-1)^(n-1)Binomial[k+1, 2n]BernoulliB[k+1-2n]BernoulliB[2n], {n, 0, (k+1)/2}], {k, 3, 50, 4}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition corrected by Tito Piezas III, May 18 2009
STATUS
approved