

A057872


A version of the Chebyshev function theta(n): a(n) = round(Sum_{primes p <= n } log(p)).


6



0, 0, 1, 2, 2, 3, 3, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 13, 13, 16, 16, 16, 16, 19, 19, 19, 19, 19, 19, 23, 23, 26, 26, 26, 26, 26, 26, 30, 30, 30, 30, 33, 33, 37, 37, 37, 37, 41, 41, 41, 41, 41, 41, 45, 45, 45, 45, 45, 45, 49, 49, 53, 53, 53, 53, 53, 53, 57, 57, 57, 57, 62, 62, 66, 66, 66, 66
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

See A035158, which is the main entry for this function.
The old entry with this sequence number was a duplicate of A053632.


REFERENCES

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 340.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.35, p. 267.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 0..10000


FORMULA

theta(n) = log(A034386(n)).
a(n) ~ n, a statement equivalent to the Prime Number Theorem.  Charles R Greathouse IV, Sep 23 2012


PROG

(PARI) v=List(); t=0; for(n=0, 100, if(isprime(n), t+=log(n)); listput(v, round(t))); Vec(v) \\ Charles R Greathouse IV, Sep 23 2012


CROSSREFS

Cf. A034386, A215259, A215260.
Sequence in context: A259788 A033302 A072729 * A059974 A045767 A108221
Adjacent sequences: A057869 A057870 A057871 * A057873 A057874 A057875


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Oct 02 2008


STATUS

approved



