login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057820 First differences of sequence of consecutive prime powers (A000961). 16
1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

a(n) = 1 iff A000961(n) = A006549(k) for some k. - Reinhard Zumkeller, Aug 25 2002

Also run lengths of distinct terms in A070198. - Reinhard Zumkeller, Mar 01 2012

LINKS

Michael B. Porter, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A000961(n+1) - A000961(n).

EXAMPLE

Odd differences arise in pairs in neighborhoods of powers of 2, like {..,2039,2048,2053,..} gives {..,11,5,..}

MAPLE

A057820 := proc(n)

        A000961(n+1)-A000961(n) ;

end proc: # R. J. Mathar, Sep 23 2016

MATHEMATICA

Map[Length, Split[Table[Apply[LCM, Range[n]], {n, 1, 150}]]] (* Geoffrey Critzer, May 29 2015 *)

PROG

(PARI) isA000961(n) = (omega(n) == 1 | n == 1)

n_prev=1; for(n=2, 500, if(isA000961(n), print(n-n_prev); n_prev=n)) \\ Michael B. Porter, Oct 30 2009

(Haskell)

a057820_list = zipWith (-) (tail a000961_list) a000961_list

-- Reinhard Zumkeller, Mar 01 2012

CROSSREFS

Cf. A000961, A036616, A001223.

Sequence in context: A050167 A047050 A205028 * A054012 A062083 A133114

Adjacent sequences:  A057817 A057818 A057819 * A057821 A057822 A057823

KEYWORD

nonn

AUTHOR

Labos Elemer, Nov 08 2000

EXTENSIONS

Offset corrected and b-file adjusted by Reinhard Zumkeller, Mar 03 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 22 19:31 EDT 2017. Contains 286885 sequences.