This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057820 First differences of sequence of consecutive prime powers (A000961). 18
 1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS a(n) = 1 iff A000961(n) = A006549(k) for some k. - Reinhard Zumkeller, Aug 25 2002 Also run lengths of distinct terms in A070198. - Reinhard Zumkeller, Mar 01 2012 LINKS Michael B. Porter, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A000961(n+1) - A000961(n). EXAMPLE Odd differences arise in pairs in neighborhoods of powers of 2, like {..,2039,2048,2053,..} gives {..,11,5,..} MAPLE A057820 := proc(n)         A000961(n+1)-A000961(n) ; end proc: # R. J. Mathar, Sep 23 2016 MATHEMATICA Map[Length, Split[Table[Apply[LCM, Range[n]], {n, 1, 150}]]] (* Geoffrey Critzer, May 29 2015 *) PROG (PARI) isA000961(n) = (omega(n) == 1 || n == 1) n_prev=1; for(n=2, 500, if(isA000961(n), print(n-n_prev); n_prev=n)) \\ Michael B. Porter, Oct 30 2009 (Haskell) a057820_list = zipWith (-) (tail a000961_list) a000961_list -- Reinhard Zumkeller, Mar 01 2012 CROSSREFS Cf. A000961, A036616, A001223. Sequence in context: A205028 A325055 A325526 * A054012 A062083 A133114 Adjacent sequences:  A057817 A057818 A057819 * A057821 A057822 A057823 KEYWORD nonn AUTHOR Labos Elemer, Nov 08 2000 EXTENSIONS Offset corrected and b-file adjusted by Reinhard Zumkeller, Mar 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 04:37 EDT 2019. Contains 328247 sequences. (Running on oeis4.)