|
|
A000015
|
|
Smallest prime power >= n.
|
|
9
|
|
|
1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11, 13, 13, 16, 16, 16, 17, 19, 19, 23, 23, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 32, 37, 37, 37, 37, 37, 41, 41, 41, 41, 43, 43, 47, 47, 47, 47, 49, 49, 53, 53, 53, 53, 59, 59, 59, 59, 59, 59, 61, 61, 64, 64, 64, 67, 67, 67, 71, 71, 71, 71, 73
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
David W. Wilson, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Prime Power
|
|
FORMULA
|
a(A110654(n+1)) = A188666(n). - Reinhard Zumkeller, Apr 25 2011, corrected by M. F. Hasler, Jul 25 2015
a(n) = A188666(2n-1). - M. F. Hasler, Jul 25 2015
|
|
MAPLE
|
N:= 1000: # to get all terms <= N
Primes:= select(isprime, {$1..N}):
PPs:= {1} union Primes:
for k from 1 to ilog2(N) do
PPs:= PPs union map(`^`, select(`<=`, Primes, floor(N^(1/k))), k)
od:
PPs:= sort(convert(PPs, list)):
1, seq(PPs[i]$(PPs[i]-PPs[i-1]), i=2..nops(PPs)); # Robert Israel, Jul 23 2015
|
|
MATHEMATICA
|
Insert[Table[m:=n; While[Not[Length[FactorInteger[m]]==1], m++ ]; m, {n, 2, 100}], 1, 1] (* Stefan Steinerberger, Apr 17 2006 *)
a[n_] := NestWhile[# + 1 &, n, Not@*PrimePowerQ]; (* Matthew House, Jul 14 2015, v6.0+ *)
a[ n_] := If[ n < 2, Boole[n == 1], Module[{m = n}, While[ ! PrimePowerQ[ m], m++]; m]]; (* Michael Somos, Mar 06 2018 *)
a[ n_] := If[ n < 1, 0, Module[{m = n}, While[ Length[ FactorInteger @ m ] != 1, m++]; m]]; (* Michael Somos, Mar 06 2018 *)
|
|
PROG
|
(PARI) {a(n) = if( n<1, 0, while(matsize(factor(n))[1]>1, n++); n)}; /* Michael Somos, Jul 16 2002 */
(PARI) a(n)=if(n>1, while(!isprimepower(n), n++)); n \\ Charles R Greathouse IV, Feb 01 2013
(Sage) [next_prime_power(n) for n in range(72)] # Zerinvary Lajos, Jun 13 2009
(Haskell)
a000015 n = a000015_list !! (n-1)
a000015_list = 1 : concat
(zipWith(\pp qq -> replicate (fromInteger (pp - qq)) pp)
(tail a000961_list) a000961_list)
-- Reinhard Zumkeller, Nov 17 2011, Apr 25 2011
|
|
CROSSREFS
|
Cf. A000961, A031218.
Sequence in context: A034152 A343271 A114707 * A306369 A291784 A291934
Adjacent sequences: A000012 A000013 A000014 * A000016 A000017 A000018
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Michael Somos, Jul 16 2002
|
|
STATUS
|
approved
|
|
|
|