login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110654 a(n) = ceiling(n/2), or: a(2*k) = k, a(2*k+1) = k+1. 50
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The number of partitions of 2n into exactly 2 odd parts. - Wesley Ivan Hurt, Jun 01 2013

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 0..10000

Wikipedia, The Free Encyclopedia Floor and ceiling functions

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(n) = floor(n/2) + n mod 2.

a(n) = A004526(n+1) = A001057(n)*(-1)^(n+1).

For n > 0: a(n) = A008619(n-1).

A110655(n) = a(a(n)), A110656(n) = a(a(a(n))).

a(n) = A109613(n) - A028242(n) = A110660(n) / A028242(n).

a(n) = A001222(A029744(n)). - Reinhard Zumkeller, Feb 16 2006

a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2, a(2) = a(1) = 1, a(0) = 0. - Reinhard Zumkeller, May 22 2006

First differences of quarter-squares: a(n) = A002620(n+1) - A002620(n). - Reinhard Zumkeller, Aug 06 2009

a(n) = A007742(n) - A173511(n). - Reinhard Zumkeller, Feb 20 2010

a(n) = A000217(n) / A008619(n). - Reinhard Zumkeller, Aug 24 2011

From Michael Somos, Sep 19 2006: (Start)

Euler transform of length 2 sequence [1, 1].

G.f.: x/((1-x)*(1-x^2)).

a(-1-n) = -a(n). (End)

a(n) = floor((n+1)/2) = |Sum_{m=1..n} Sum_{k=1..m} (-1)^k|, where |x| is the absolute value of x. - William A. Tedeschi, Mar 21 2008

a(n) = A065033(n) for n > 0. - R. J. Mathar, Aug 18 2008

a(n) = 1/4 - (-1)^n/4 + n/2. - Paolo P. Lava, Oct 03 2008

a(n) = ceiling(n/2) = smallest integer >= n/2. - M. F. Hasler, Nov 17 2008

If n is zero then a(n) is zero, else a(n) = a(n-1) + (n mod 2). - R. J. Cano, Jun 15 2014

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + x) * u * v - (u^2 - v) / 2. - Michael Somos, Jun 15 2014

Given g.f. A(x) then 2 * x^3 * (1 + x) * A(x) * A(x^2) is the g.f. of A014557. - Michael Somos, Jun 15 2014

a(n) = (n + (n mod 2)) / 2. - Fred Daniel Kline, Jun 08 2016

E.g.f.: (sinh(x) + x*exp(x))/2. - Ilya Gutkovskiy, Jun 08 2016

EXAMPLE

G.f. = x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 5*x^9 + ...

MAPLE

a:=n->add(chrem( [n, j], [1, 2] ), j=1..n):seq(a(n), n=0..75); # Zerinvary Lajos, Apr 08 2009

MATHEMATICA

a[ n_] := Ceiling[ n / 2]; (* Michael Somos, Jun 15 2014 *)

a[ n_] := Quotient[ n, 2, -1]; (* Michael Somos, Jun 15 2014 *)

a[0] = 0; a[n_] := a[n] = n - a[n - 1]; Table[a[n], {n, 0, 100}] (* Carlos Eduardo Olivieri, Dec 22 2014 *)

CoefficientList[Series[x^/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *)

LinearRecurrence[{1, 1, -1}, {0, 1, 1}, 75] (* Robert G. Wilson v, Feb 05 2015 *)

PROG

(PARI) a(n)=n\2+n%2;

(PARI) a(n)=(n+1)\2; \\ M. F. Hasler

(Sage) [floor(n/2) + 1 for n in xrange(-1, 75)] # Zerinvary Lajos, Dec 01 2009

(Haskell)

a110654 = (`div` 2) . (+ 1)

a110654_list = tail a004526_list  -- Reinhard Zumkeller, Jul 27 2012

(MAGMA) [Ceiling(n/2): n in [0..80]]; // Vincenzo Librandi, Nov 04 2014

CROSSREFS

Essentially the same sequence as A008619 and A123108.

Cf. A014557.

Sequence in context: A140106 A123108 A008619 * A109728 A157271 A025162

Adjacent sequences:  A110651 A110652 A110653 * A110655 A110656 A110657

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Aug 05 2005

EXTENSIONS

Deleted wrong formula, added formula & better PARI code. - M. F. Hasler, Nov 17 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 15:27 EST 2017. Contains 295089 sequences.