login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110654 Ceiling(n/2), or: a(2*k) = k, a(2*k+1) = k+1. 50
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The number of partitions of 2n into exactly 2 odd parts. - Wesley Ivan Hurt, Jun 01 2013

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 0..10000

Wikipedia, The Free Encyclopedia Floor and ceiling functions

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(n) = floor(n/2) + n mod 2.

a(n) = A004526(n+1) = A001057(n)*(-1)^(n+1);

for n > 0: a(n) = A008619(n-1);

A110655(n) = a(a(n)), A110656(n) = a(a(a(n)));

a(n) = A109613(n) - A028242(n) = A110660(n) / A028242(n).

a(n) = A001222(A029744(n)). - Reinhard Zumkeller, Feb 16 2006

First differences of quarter-squares: a(n) = A002620(n+1) - A002620(n). - Reinhard Zumkeller, Aug 06 2009

a(n) = A007742(n) - A173511(n). - Reinhard Zumkeller, Feb 20 2010

a(n) = A000217(n) / A008619(n). - Reinhard Zumkeller, Aug 24 2011

a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2, a(2) = a(1) = 1, a(0) = 0. - Reinhard Zumkeller, May 22 2006

Euler transform of length 2 sequence [ 1, 1]. - Michael Somos, Sep 19 2006

G.f.: x/((1-x)*(1-x^2)). a(-1-n) = -a(n). - Michael Somos, Sep 19 2006

a(n) = floor((n+1)/2) = |Sum{m=1..n, Sum{k=1..m, (-1)^k}}| for n >= 0 where |x| is the absolute value of x. - William A. Tedeschi, Mar 21 2008

a(n) = A065033(n), n > 0. - R. J. Mathar, Aug 18 2008

a(n) = 1/4 - (-1)^n/4 + n/2, with n >= 0. - Paolo P. Lava, Oct 03 2008

a(n) = ceil(n/2) = ceiling(n/2) = smallest integer >= n/2. - M. F. Hasler, Nov 17 2008

If n is zero then a(n) is zero, else a(n)=a(n-1)+(n MOD 2). - R. J. Cano, Jun 15 2014

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + x) * u * v - (u^2 - v) / 2. - Michael Somos, Jun 15 2014

Given g.f. A(x) then 2 * x^3 * (1 + x) * A(x) * A(x^2) is the g.f. of A014557. - Michael Somos, Jun 15 2014

a(n) = (n + (n mod 2)) / 2. - Fred Daniel Kline, Jun 08 2016

E.g.f.: (sinh(x) + x*exp(x))/2. - Ilya Gutkovskiy, Jun 08 2016

EXAMPLE

G.f. = x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 5*x^9 + ...

MAPLE

a:=n->add(chrem( [n, j], [1, 2] ), j=1..n):seq(a(n), n=0..75); # Zerinvary Lajos, Apr 08 2009

MATHEMATICA

a[ n_] := Ceiling[ n / 2]; (* Michael Somos, Jun 15 2014 *)

a[ n_] := Quotient[ n, 2, -1]; (* Michael Somos, Jun 15 2014 *)

a[0] = 0; a[n_] := a[n] = n - a[n - 1]; Table[a[n], {n, 0, 100}] (* Carlos Eduardo Olivieri, Dec 22 2014 *)

CoefficientList[Series[x^/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *)

LinearRecurrence[{1, 1, -1}, {0, 1, 1}, 75] (* Robert G. Wilson v, Feb 05 2015 *)

PROG

(PARI) a(n)=n\2+n%2;

(PARI) a(n)=(n+1)\2; /* M. F. Hasler */

(Sage) [floor(n/2) + 1 for n in xrange(-1, 75)] # Zerinvary Lajos, Dec 01 2009

(Haskell)

a110654 = (`div` 2) . (+ 1)

a110654_list = tail a004526_list  -- Reinhard Zumkeller, Jul 27 2012

(MAGMA) [Ceiling(n/2): n in [0..80]]; // Vincenzo Librandi, Nov 04 2014

CROSSREFS

Essentially the same sequence as A008619 and A123108.

Cf. A014557.

Sequence in context: A140106 A123108 A008619 * A109728 A157271 A025162

Adjacent sequences:  A110651 A110652 A110653 * A110655 A110656 A110657

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Aug 05 2005

EXTENSIONS

Deleted wrong formula, added formula & better PARI code. - M. F. Hasler, Nov 17 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 27 08:32 EDT 2017. Contains 284146 sequences.