OFFSET
1,2
COMMENTS
Starting from a(1)=1 sequence cycles starting from a(25) = 48889, 77789, 155578, 111356, 122227, 244445, 48889, ... etc.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
FORMULA
G.f.: x*(-219996*x^29 - 109980*x^28 - 99000*x^27 - 144000*x^26 - 72000*x^25 - 44100*x^24 - 21960*x^23 - 9801*x^22 - 11133*x^21 - 10422*x^20 - 5211*x^19 - 4500*x^18 - 2043*x^17 - 2223*x^16 - 1107*x^15 - 1098*x^14 - 549*x^13 - 243*x^12 - 423*x^11 - 207*x^10 - 108*x^9 - 54*x^8 - 27*x^7 - 45*x^6 - 23*x^5 - 16*x^4 - 8*x^3 - 4*x^2 - 2*x - 1)/(x^6 - 1). - Chai Wah Wu, Nov 20 2018
EXAMPLE
a(8)=29 since a(7)=46, 46 + 46 = 92 and 92 sorted is 29.
MATHEMATICA
NestList[FromDigits[Sort[IntegerDigits[2#]]]&, 1, 40] (* Harvey P. Dale, Oct 03 2011 *)
PROG
(Python)
from itertools import accumulate
def ats(anm1, _): return int("".join(sorted(str(2*anm1))))
print(list(accumulate([1]*40, ats))) # Michael S. Branicky, Jul 17 2021
CROSSREFS
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
KEYWORD
base,easy,nonn
AUTHOR
Henry Bottomley, Oct 09 2000
STATUS
approved