|
|
A004094
|
|
Powers of 2 written backwards.
|
|
28
|
|
|
1, 2, 4, 8, 61, 23, 46, 821, 652, 215, 4201, 8402, 6904, 2918, 48361, 86723, 63556, 270131, 441262, 882425, 6758401, 2517902, 4034914, 8068838, 61277761, 23445533, 46880176, 827712431, 654534862, 219078635, 4281473701, 8463847412
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Freeman Dyson believes that A014963(a(n))<>5 is true but cannot be proved, see link. - Reinhard Zumkeller, Jan 05 2005
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..1000
Edge Foundation, Annual Question 2005
Richard Lipton, More on testing Dyson's conjecture (2014)
N. J. A. Sloane, Exciting Number Sequences (video of talk), Mar 05 2021.
|
|
FORMULA
|
a(n) = A004086(A000079(n)). - Reinhard Zumkeller, Apr 02 2014
|
|
MAPLE
|
a:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||(2^n)):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 21 2020
|
|
MATHEMATICA
|
Table[FromDigits[Reverse[IntegerDigits[2^n]]], {n, 0, 35}] (* Vincenzo Librandi, Jan 22 2020 *)
|
|
PROG
|
(Haskell)
a004094 = a004086 . a000079 -- Reinhard Zumkeller, Apr 02 2014
(PARI) rev(n)=subst(Polrev(digits(n)), 'x, 10)
a(n)=rev(2^n) \\ Charles R Greathouse IV, Oct 20 2014
(PARI) apply( {A004094(n)=fromdigits(Vecrev(digits(2^n)))}, [0..44]) \\ M. F. Hasler, Feb 18 2021
(MAGMA) [Seqint(Reverse(Intseq(2^n))): n in [0..35]]; // Vincenzo Librandi, Jan 22 2020
(Python)
def A004094(n):
return int(str(2**n)[::-1]) # Chai Wah Wu, Feb 19 2021
|
|
CROSSREFS
|
Cf. A014963, A102382, A102383, A102384, A102385.
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Cf. A004086 (read n backwards).
For indices of primes see A057708.
Sequence in context: A206850 A094333 A018473 * A028910 A018482 A036447
Adjacent sequences: A004091 A004092 A004093 * A004095 A004096 A004097
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
More terms from Reinhard Zumkeller, Jan 05 2005
|
|
STATUS
|
approved
|
|
|
|