login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057587 Nonnegative numbers of form n*(n^2+-1)/2. 3
0, 1, 3, 5, 12, 15, 30, 34, 60, 65, 105, 111, 168, 175, 252, 260, 360, 369, 495, 505, 660, 671, 858, 870, 1092, 1105, 1365, 1379, 1680, 1695, 2040, 2056, 2448, 2465, 2907, 2925, 3420, 3439, 3990, 4010, 4620, 4641, 5313, 5335, 6072, 6095, 6900, 6924, 7800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Taking alternate terms gives A027480 and A006003. - Jeremy Gardiner, Apr 10 2005

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).

FORMULA

a(n) = (2*n^3+9*n^2+15*n+5+(3*n^2+n-5)*(-1)^n)/32. - Luce ETIENNE, Nov 18 2014

From Wesley Ivan Hurt, Mar 27 2015: (Start)

G.f.: x*(1 + 2 x - x^2 + x^3)/((x - 1)^4*(x + 1)^3).

a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7). (End)

MAPLE

A057587:=n->(2*n^3+9*n^2+15*n+5+(3*n^2+n-5)*(-1)^n)/32: seq(A057587(n), n=0..50); # Wesley Ivan Hurt, Mar 27 2015

MATHEMATICA

CoefficientList[Series[x*(1 + 2 x - x^2 + x^3)/((x - 1)^4*(x + 1)^3), {x, 0, 50}], x] (* Wesley Ivan Hurt, Mar 27 2015 *)

Table[(2 n^3 + 9 n^2 + 15 n + 5 + (3 n^2 + n - 5) (-1)^n) / 32, {n, 0, 50}] (* Vincenzo Librandi, Mar 28 2015 *)

PROG

(PARI) concat(0, Vec(x*(x^3-x^2+2*x+1)/((x-1)^4*(x+1)^3) + O(x^100))) \\ Colin Barker, Nov 18 2014

(MAGMA) [(2*n^3+9*n^2+15*n+5+(3*n^2+n-5)*(-1)^n)/32 : n in [0..50]]; // Wesley Ivan Hurt, Mar 27 2015

CROSSREFS

Cf. A027480, A006003.

Sequence in context: A260818 A151866 A269928 * A213036 A032438 A025083

Adjacent sequences:  A057584 A057585 A057586 * A057588 A057589 A057590

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Oct 05 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 07:42 EDT 2019. Contains 321345 sequences. (Running on oeis4.)