login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057527 4th level factorials: product of first n superduperfactorials. 4
1, 1, 2, 48, 331776, 79254226206720, 471092427871945743012986880000, 351177419973413722592573060611594181593855426560000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In general for k-th level factorials a(n) =Product of first n (k-1)-th level factorials =Product[i^C(n-i+k-1,n-i)] over 1<=i<=n.

LINKS

Table of n, a(n) for n=0..7.

FORMULA

a(n) =a(n-1)*A055462(n) =Product[i^A000332(n-i)] over 1<=i<=n.

a(n) ~ exp(11/72 - 5*n/6 - 4*n^2/3 - 11*n^3/18 - 25*n^4/288 + Zeta(3)*(n+2) / (8*Pi^2) + Zeta'(-3)/6) * n^(251/720 + n + 11*n^2/12 + n^3/3 + n^4/24) * (2*Pi)^((n+1)*(n+2)*(n+3)/12) / A^(11/6 + 2*n + n^2/2), where Zeta(3) = A002117, Zeta'(-3) = A259068 = 0.0053785763577743011444169742104138428956644397... and A = A074962 = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 24 2015

EXAMPLE

a(4) =((4!*3!*2!*1!)*(3!*2!*1!)*(2!*1!)*(1!)) * ((3!*2!*1!)*(2!*1!)*(1!)) * ((2!*1!)*(1!)) * ((1!)) =24*6^3*2^6*1^10 =331776

MATHEMATICA

Table[Product[i^Binomial[n-i+3, 3], {i, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Jul 24 2015 *)

CROSSREFS

Cf. A000142, A000178, A055462, A057528, A260404 for first, second, third, fifth and sixth level factorials.

Sequence in context: A203305 A191954 A212170 * A166475 A152688 A046873

Adjacent sequences:  A057524 A057525 A057526 * A057528 A057529 A057530

KEYWORD

easy,nonn

AUTHOR

Henry Bottomley, Sep 02 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 22 00:25 EDT 2017. Contains 292326 sequences.