This site is supported by donations to The OEIS Foundation.



Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057093 Scaled Chebyshev U-polynomials evaluated at i*sqrt(10)/2. Generalized Fibonacci sequence. 8
1, 10, 110, 1200, 13100, 143000, 1561000, 17040000, 186010000, 2030500000, 22165100000, 241956000000, 2641211000000, 28831670000000, 314728810000000, 3435604800000000, 37503336100000000, 409389409000000000, 4468927451000000000, 48783168600000000000 (list; graph; refs; listen; history; text; internal format)



This is the m=10 member of the m-family of sequences a(m,n)= S(n,i*sqrt(m))*(-i*sqrt(m))^n, with S(n,x) given in Formula and g.f.: 1/(1-m*x-m*x^2). The instances m=1..9 are A000045 (Fibonacci), A002605, A030195, A057087, A057088, A057089, A057090, A057091, A057092.

With the roots rp(m) := (m+sqrt(m*(m+4)))/2 and rm(m) := (m-sqrt(m*(m+4)))/2 the Binet form of these m-sequences is a(n,m)= (rp(m)^(n+1)-rm(m)^(n+1))/(rp(m)-rm(m)).

a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^10, 1->(1^10)0, starting from 0. The number of 1's and 0's of this word is 10*a(n-1) and 10*a(n-2), resp.


Colin Barker, Table of n, a(n) for n = 0..963

Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=10, q=10.

Tanya Khovanova, Recursive Sequences

W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=10.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (10,10).


a(n) = 10*(a(n-1)+a(n-2)), a(-1)=0, a(0)=1.

a(n) = S(n, i*sqrt(10))*(-i*sqrt(10))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.

G.f.: 1/(1-10*x-10*x^2).

a(n) = Sum_{k=0..n} 9^k*A063967(n,k). - Philippe Deléham, Nov 03 2006

a(n) = -(1/70)*[5-sqrt(35)]^(n+1)*sqrt(35)+(1/70)*sqrt(35)*[5+sqrt(35)]^(n+1), with n>=0. - Paolo P. Lava, Nov 20 2008


Join[{a=0, b=1}, Table[c=10*b+10*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)


(Sage) [lucas_number1(n, 10, -10) for n in xrange(1, 19)] # Zerinvary Lajos, Apr 26 2009

(PARI) Vec(1/(1-10*x-10*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015


Sequence in context: A290066 A289933 A289967 * A055276 A264915 A289414

Adjacent sequences:  A057090 A057091 A057092 * A057094 A057095 A057096




Wolfdieter Lang, Aug 11 2000


Extended by T. D. Noe, May 23 2011



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 09:09 EST 2017. Contains 294874 sequences.