The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057092 Scaled Chebyshev U-polynomials evaluated at i*3/2. Generalized Fibonacci sequence. 10
 1, 9, 90, 891, 8829, 87480, 866781, 8588349, 85096170, 843160671, 8354311569, 82777250160, 820184055561, 8126651751489, 80521522263450, 797833566134451, 7905195795581109, 78327264255440040, 776092140459190341, 7689774642431673429, 76192801046017773930 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^9, 1->(1^9)0, starting from 0. The number of 1's and 0's of this word is 9*a(n-1) and 9*a(n-2), resp. a(n) gives the number of n-digit integers which have no digit repeated 3 times in a row. Example: a(2)= 90 which is all the 2-digit integers. a(3) = 891 = all 900 3-digit integers except 111, 222, 333, ..., 999. - Toby Gottfried, Apr 01 2013 a(n) is the number of n-digit integers which do not have two consecutive zeros. - Ran Pan, Jan 26 2016 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5. A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=9, q=9. Tanya Khovanova, Recursive Sequences W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=9. Index entries for linear recurrences with constant coefficients, signature (9,9). FORMULA a(n) = 9*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1. a(n) = S(n, i*3)*(-i*3)^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. G.f.: 1/(1-9*x-9*x^2). a(n) = Sum_{k, 0<=k<=n}8^k*A063967(n,k). - Philippe Deléham, Nov 03 2006 a(n) = (1/39)*[(9/2)+(3/2)*sqrt(13)]^(n+1)*sqrt(13)-(1/39)*sqrt(13)*[(9/2)-(3/2)*sqrt(13)]^(n+1), with n>=0. - Paolo P. Lava, Nov 20 2008 MATHEMATICA Join[{a=0, b=1}, Table[c=9*b+9*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *) LinearRecurrence[{9, 9}, {1, 9}, 50] (* G. C. Greubel, Jan 25 2018 *) PROG (Sage) [lucas_number1(n, 9, -9) for n in range(1, 20)] # Zerinvary Lajos, Apr 26 2009 (PARI) Vec(1/(1-9*x-9*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015 (Magma) I:=[1, 9]; [n le 2 select I[n] else 9*Self(n-1) + 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018 CROSSREFS Sequence in context: A242161 A227713 A343366 * A156577 A299872 A173480 Adjacent sequences: A057089 A057090 A057091 * A057093 A057094 A057095 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Aug 11 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 06:26 EST 2022. Contains 358582 sequences. (Running on oeis4.)