OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Henry Bottomley, Some Smarandache-type multiplicative sequences.
FORMULA
a(n) = A007947(A050985(n)) = A019555(A050985(n)) = n/(A053150(n)*A000189(n)) = A019555(n)/A053150(n) = A056551(n)^(1/3).
If n = Product_{j} Pj^Ej then a(n) = Product_{j} Pj^Fj, where Fj = 0 if Ej is 0 or a multiple of 3 and Fj = 1 otherwise.
Multiplicative with a(p^e) = p^(if 3|e, then 0, else 1). - Mitch Harris, Apr 19 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(6)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.3480772773... . - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(3*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 16 2023
EXAMPLE
a(32) = 2 because cubefree part of 32 is 4 and powerfree kernel of 4 is 2.
MATHEMATICA
f[p_, e_] := p^If[Divisible[e, 3], 0, 1]; a[n_] := Times @@ (f @@@ FactorInteger[ n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
PROG
(PARI) a(n) = my(f=factor(n)); for (k=1, #f~, if (frac(f[k, 2]/3), f[k, 2] = 1, f[k, 2] = 0)); factorback(f); \\ Michel Marcus, Feb 28 2019
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Henry Bottomley, Jun 25 2000
STATUS
approved