login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048798 Smallest k > 0 such that n*k is a perfect cube. 10
1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 4, 289, 12, 361, 50, 441, 484, 529, 9, 5, 676, 1, 98, 841, 900, 961, 2, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, 1849, 242, 75, 2116, 2209, 36, 7, 20, 2601, 338, 2809, 4, 3025, 49, 3249 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Note that in general the smallest number k(>0) such that nk is a perfect m-th power (rather obviously) = (the smallest m-th power divisible by n)/n and also (slightly less obviously) =n^(m-1)/(the number of solutions of x^m==0 mod n)^m. - Henry Bottomley, Mar 03 2000

Multiplicative with a(p^e) = p^(2 - e%3). - Mitch Harris, May 17 2005

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Peter Kagey)

Krassimir T. Atanassov, On the 22nd, the 23rd and 24th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5, No. 2 (1998), pp. 80-82.

Krassimir T. Atanassov, On Some of Smarandache's Problems, American Research Press, 1999, 16-21.

Henry Bottomley, Some Smarandache-type multiplicative sequences.

Marcela Popescu and Mariana Nicolescu, About the Smarandache Complementary Cubic Function, Smarandache Notions Journal, Vol. 7, No. 1-2-3, 1996, pp. 54-62.

Florentin Smarandache, Only Problems, Not Solutions!.

FORMULA

a(n) = A053149(n)/n = n^2/A000189(n)^3.

EXAMPLE

a(12) = a(2*2*3) = 2*3*3 = 18 since 12*18 = 6^3.

a(28) = a(2*2*7) = 2*7*7 = 98 since 28*98 = 14^3.

MATHEMATICA

a[n_] := For[k = 1, True, k++, If[ Divisible[c = k^3, n], Return[c/n]]]; Table[a[n], {n, 1, 60}] (* Jean-Fran├žois Alcover, Sep 03 2012 *)

f[p_, e_] := p^(Mod[3 - e, 3]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)

PROG

(PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], f[i, 1]^(-f[i, 2]%3)) \\ Charles R Greathouse IV, Feb 27 2013

(PARI) a(n)=for(k=1, n^2, if(ispower(k*n, 3), return(k)))

vector(100, n, a(n)) \\ Derek Orr, Feb 07 2015

CROSSREFS

Cf. A000189, A007913, A053149.

Cf. A254767 (analogous sequence with the restriction that k > n).

Sequence in context: A256513 A064505 A253288 * A007914 A048758 A277802

Adjacent sequences:  A048795 A048796 A048797 * A048799 A048800 A048801

KEYWORD

nonn,easy,mult

AUTHOR

Charles T. Le (charlestle(AT)yahoo.com)

EXTENSIONS

More terms from Patrick De Geest, Feb 15 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 11:26 EDT 2021. Contains 343064 sequences. (Running on oeis4.)