login
A053149
Smallest cube divisible by n.
13
1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 64, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 64, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648
OFFSET
1,2
FORMULA
a(n) = (n/A000189(n))^3 = A008834(n)*A019554(A050985(n))^3 = n*A050985(n)^2/A000188(A050985(n))^3.
a(n) = n * A048798(n). - Franklin T. Adams-Watters, Apr 08 2009
From Amiram Eldar, Jul 29 2022: (Start)
Multiplicative with a(p^e) = p^(e + ((3-e) mod 3)).
Sum_{n>=1} 1/a(n) = Product_{p prime} ((p^3+2)/(p^3-1)) = 1.655234386560802506... . (End)
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(9)/(4*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A013667*A330596/(4*A002117) = 0.1559906... . - Amiram Eldar, Oct 27 2022
MATHEMATICA
a[n_] := For[k = 1, True, k++, If[ Divisible[c = k^3, n], Return[c]]]; Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Sep 03 2012 *)
f[p_, e_] := p^(e + Mod[3 - e, 3]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
scdn[n_]:=Module[{c=Ceiling[Surd[n, 3]]}, While[!Divisible[c^3, n], c++]; c^3]; Array[scdn, 50] (* Harvey P. Dale, Jun 13 2020 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(f[i, 2] + (3-f[i, 2])%3)); } \\ Amiram Eldar, Oct 27 2022
KEYWORD
nonn,easy,mult
AUTHOR
Henry Bottomley, Feb 28 2000
STATUS
approved