login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056342 Number of bracelets of length n using exactly two different colored beads. 6
0, 1, 2, 4, 6, 11, 16, 28, 44, 76, 124, 222, 378, 685, 1222, 2248, 4110, 7683, 14308, 27010, 50962, 96907, 184408, 352696, 675186, 1296856, 2493724, 4806076, 9272778, 17920858, 34669600, 67159048, 130216122, 252745366, 490984486, 954637556, 1857545298, 3617214679, 7048675958, 13744694926, 26818405350 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Turning over will not create a new bracelet.

REFERENCES

M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..3000

FORMULA

a(n) = A000029(n) - 2.

From Robert A. Russell, Sep 26 2018: (Start)

a(n) = (A052823(n) + A027383(n-2)) / 2 = A059076(n) + A027383(n-2).

a(n) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where k=2 is the number of colors and S2 is the Stirling subset number A008277.

G.f.: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=2 is the number of colors. (End)

EXAMPLE

For a(6)=11, the arrangements are AAAAAB, AAAABB, AAABAB, AAABBB, AABAAB, AABBBB, ABABAB, ABABBB, ABBABB, ABBBBB, and AABABB, the last being chiral. Its reverse is AABBAB. - Robert A. Russell, Sep 26 2018

MATHEMATICA

a[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n) - 2; Array[a, 41] (* Jean-Fran├žois Alcover, Nov 05 2017 *)

k=2; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n, 1, 30}] (* Robert A. Russell, Sep 26 2018 *)

PROG

(PARI) a(n) = my(k=2); (k!/4)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2)); \\ Michel Marcus, Sep 28 2018

CROSSREFS

Column 2 of A273891.

Equals A052823 - A059076.

Cf. A008277, A027383.

Sequence in context: A114921 A103442 A238375 * A094719 A294811 A255214

Adjacent sequences:  A056339 A056340 A056341 * A056343 A056344 A056345

KEYWORD

nonn

AUTHOR

Marks R. Nester

EXTENSIONS

More terms from Joerg Arndt, Jun 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:26 EDT 2019. Contains 322446 sequences. (Running on oeis4.)