login
A238375
Row sums of triangle in A152719.
2
1, 2, 4, 6, 11, 16, 28, 40, 69, 98, 168, 238, 407, 576, 984, 1392, 2377, 3362, 5740, 8118, 13859, 19600, 33460, 47320, 80781, 114242, 195024, 275806, 470831, 665856, 1136688, 1607520, 2744209, 3880898, 6625108, 9369318, 15994427, 22619536, 38613964, 54608392
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A152719(n,k).
G.f.: (1+x)/((1-2*x^2-x^4)*(1-x)).
a(2*n) = A005409(n+2).
a(2*n+1) = 2*A048739(n).
a(n) = (-4 + 2*(1+(-1)^n)*Pell((n+4)/2) + (1-(-1)^n)*Q((n+3)/2))/4, where Pell(n) = A000129(n) and Q(n) = A002203(n). - G. C. Greubel, May 21 2021
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)+a(n-4)-a(n-5). - Wesley Ivan Hurt, May 22 2021
EXAMPLE
Triangle A152719 and row sums:
1; ............................. sum = 1
1, 1; .......................... sum = 2
1, 2, 1; ....................... sum = 4
1, 2, 2, 1; ................... sum = 6
1, 2, 5, 2, 1; ............... sum = 11
1, 2, 5, 5, 2, 1; ............ sum = 16
1, 2, 5, 12, 5, 2, 1; ......... sum = 28
1, 2, 5, 12, 12, 5, 2, 1; ...... sum = 40
MATHEMATICA
Table[Sum[Fibonacci[1+Min[k, n-k], 2], {k, 0, n}], {n, 0, 45}] (* G. C. Greubel, May 21 2021 *)
PROG
(Sage)
def Pell(n): return n if (n<2) else 2*Pell(n-1) + Pell(n-2)
def a(n): return sum(Pell(1+min(k, n-k)) for k in (0..n))
[a(n) for n in (0..45)] # G. C. Greubel, May 21 2021
(PARI) my(x='x+O('x^44)); Vec((1+x)/((1-2*x^2-x^4)*(1-x))) \\ Joerg Arndt, May 22 2021
CROSSREFS
Cf. A000129, A002203, A005409, A048739, A135153 (first differences), A152719.
Sequence in context: A103692 A114921 A103442 * A056342 A094719 A294811
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Feb 25 2014
STATUS
approved