The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056242 Triangle read by rows: T(n,k) = number of k-part order-consecutive partition of {1,2,...,n} (1 <= k <= n). 10
 1, 1, 2, 1, 5, 4, 1, 9, 16, 8, 1, 14, 41, 44, 16, 1, 20, 85, 146, 112, 32, 1, 27, 155, 377, 456, 272, 64, 1, 35, 259, 833, 1408, 1312, 640, 128, 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256, 1, 54, 606, 3024, 8361, 14002, 14608, 9312, 3328, 512, 1, 65, 870, 5202 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Generalized Riordan array (1/(1-x), x/(1-x) + x*dif(x/1-x),x)). - Paul Barry, Dec 26 2007 Reversal of A117317. - Philippe Deléham, Feb 11 2012 Essentially given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 11 2012 This sequence is given in the Strehl presentation with the o.g.f. (1-z)/[1-2(1+t)z+(1+t)z^2], with offset 0, along with a recursion relation, a combinatorial interpretation, and relations to Hermite and Laguerre polynomials. Note that the o.g.f. is related to that of A049310. - Tom Copeland, Jan 08 2017 LINKS Reinhard Zumkeller, Rows n = 1..125 of table, flattened Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, Involve, Vol. 8 (2015), No. 1, 25-32. F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333. V. Strehl, Combinatoire rétrospective et créative, an on-line presentation, slide 36, SLC 71, Bertinoro,, September 18, 2013. Volker Strehl, Lacunary Laguerre Series from a Combinatorial Perspective, Séminaire Lotharingien de Combinatoire, B76c (2017). FORMULA The Hwang and Mallows reference gives explicit formulas. T(n,k) = Sum_{j=0..k-1} (-1)^(k-1-j)*binomial(k-1, j)*binomial(n+2j-1, 2j) (1<=k<=n); this is formula (11) in the Huang and Mallows reference. T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(1,1) = 1, T(2,1) = 1, T(2,2) = 2. - Philippe Deléham, Feb 11 2012 G.f.: -(-1+x)*x*y/(1-2*x-2*x*y+x^2*y+x^2). - R. J. Mathar, Aug 11 2015 EXAMPLE Triangle begins:   1;   1,    2;   1,    5,    4;   1,    9,   16,    8;   1,   14,   41,   44,   16;   1,   20,   85,  146,  112,   32;   1,   27,  155,  377,  456,  272,   64;   1,   35,  259,  833, 1408, 1312,  640,  128;   1,   44,  406, 1652, 3649, 4712, 3568, 1472,  256; T(3,2)=5 because we have {1}{23}, {23}{1}, {12}{3}, {3]{12} and {2}{13}. Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins:   1;   1,   0;   1,   2,   0;   1,   5,   4,   0;   1,   9,  16,   8,   0;   1,  14,  41,  44,  16,   0;   1,  20,  85, 146, 112,  32,   0;   1,  27, 155, 377, 456, 272,  64,   0; MAPLE T:=proc(n, k) if k=1 then 1 elif k<=n then sum((-1)^(k-1-j)*binomial(k-1, j)*binomial(n+2*j-1, 2*j), j=0..k-1) else 0 fi end: seq(seq(T(n, k), k=1..n), n=1..12); MATHEMATICA rows = 11; t[n_, k_] := (-1)^(k+1)*HypergeometricPFQ[{1-k, (n+1)/2, n/2}, {1/2, 1}, 1]; Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 1, n}]](* Jean-François Alcover, Nov 17 2011 *) PROG (Haskell) a056242 n k = a056242_tabl !! (n-1)!! (k-1) a056242_row n = a056242_tabl !! (n-1) a056242_tabl = [1] : [1, 2] : f [1] [1, 2] where    f us vs = ws : f vs ws where      ws = zipWith (-) (map (* 2) \$ zipWith (+) ([0] ++ vs) (vs ++ [0]))                       (zipWith (+) ([0] ++ us ++ [0]) (us ++ [0, 0])) -- Reinhard Zumkeller, May 08 2014 CROSSREFS Second diagonal gives A053220. Cf. A049310. Sequence in context: A271684 A194682 A274105 * A128718 A112358 A126351 Adjacent sequences:  A056239 A056240 A056241 * A056243 A056244 A056245 KEYWORD nonn,tabl,easy,nice AUTHOR Colin Mallows, Aug 23 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 20:20 EDT 2020. Contains 333117 sequences. (Running on oeis4.)