login
A332294
Number of unimodal permutations of a multiset whose multiplicities are the prime indices of n.
14
1, 1, 1, 2, 1, 3, 1, 4, 3, 4, 1, 6, 1, 5, 4, 8, 1, 9, 1, 8, 5, 6, 1, 12, 4, 7, 9, 10, 1, 12, 1, 16, 6, 8, 5, 18, 1, 9, 7, 16, 1, 15, 1, 12, 12, 10, 1, 24, 5, 16, 8, 14, 1, 27, 6, 20, 9, 11, 1, 24, 1, 12, 15, 32, 7, 18, 1, 16, 10, 20, 1, 36, 1, 13, 16, 18, 6
OFFSET
1,4
COMMENTS
This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
FORMULA
a(n) + A332672(n) = A318762(n).
a(n) = A332288(A181821(n)).
EXAMPLE
The a(12) = 6 permutations:
{1,1,2,3}
{1,1,3,2}
{1,2,3,1}
{1,3,2,1}
{2,3,1,1}
{3,2,1,1}
MATHEMATICA
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]]];
unimodQ[q_]:=Or[Length[q]<=1, If[q[[1]]<=q[[2]], unimodQ[Rest[q]], OrderedQ[Reverse[q]]]];
Table[Length[Select[Permutations[nrmptn[n]], unimodQ]], {n, 0, 30}]
CROSSREFS
Dominated by A318762.
A less interesting version is A332288.
The complement is counted by A332672.
The opposite/negative version is A332741.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Partitions whose run-lengths are unimodal are A332280.
Sequence in context: A091420 A323906 A020952 * A079554 A247892 A366649
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 21 2020
STATUS
approved