login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056240 Smallest number whose prime divisors (taken with multiplicity) add to n. 12
2, 3, 4, 5, 8, 7, 15, 14, 21, 11, 35, 13, 33, 26, 39, 17, 65, 19, 51, 38, 57, 23, 95, 46, 69, 92, 115, 29, 161, 31, 87, 62, 93, 124, 155, 37, 217, 74, 111, 41, 185, 43, 123, 86, 129, 47, 215, 94, 141, 188, 235, 53, 329, 106, 159, 212, 265, 59, 371, 61, 177, 122 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

a(n) = index of first occurrence of n in A001414.

From David James Sycamore and Michel Marcus, Jun 16 2017, Jun 28 2017: (Start)

Recursive calculation of a(n):

For prime p, a(p) = p.

For even composite n, let P_n denote the largest prime < n-1 such that n-P_n is prime (except if n=6).

For odd composite n, let P_n denote the largest prime < n-1 such that n-3-P_n is prime.

Conjecture: a(n) = Min{q*a(n-q); q prime, P_n <= q < n-1}.

Examples:

For n=9998, P_9998=9967, and a(9998) = Min{9973*a(25),9967*a(31)}= 9967*31=308977.

For n=875, P_875=859, and a(875) = Min{863*a(12),859*a(16)}=863*35=30205.

Note: A000040 and A288313 are both subsequences of this sequence. (End)

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 2..10000

H. Havermann, Tables of sum-of-prime-factors sequences (overview with links to the first 50000 sums).

EXAMPLE

a(8) = 15 because the smallest number whose prime divisors sum to 8 is 15 (3*5).

MATHEMATICA

a = Table[0, {75}]; Do[b = Plus @@ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger[n]]; If[b < 76 && a[[b]] == 0, a[[b]] = n], {n, 2, 1000}]; a (* Robert G. Wilson v, May 04 2002 *)

b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];

a[n_] := For[k = 2, True, k++, If[b[k] == n, Return[k]]];

Table[a[n], {n, 2, 63}] (* Jean-Fran├žois Alcover, Jul 03 2017 *)

PROG

(Haskell)

a056240 = (+ 1) . fromJust . (`elemIndex` a001414_list)

-- Reinhard Zumkeller, Jun 14 2012

(PARI) isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]) == n;

a(n) = my(k=2); while(!isok(k, n), k++); k; \\ Michel Marcus, Jun 21 2017

CROSSREFS

Cf. A001414, A064502, A000040, A288313.

First column of array A064364, n>=2.

See A000792 for the maximal numbers whose prime factors sums up to n.

Sequence in context: A074756 A240221 A075162 * A069968 A086931 A243405

Adjacent sequences:  A056237 A056238 A056239 * A056241 A056242 A056243

KEYWORD

nonn,easy

AUTHOR

Adam Kertesz, Aug 19 2000

EXTENSIONS

More terms from James A. Sellers, Aug 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 17:26 EDT 2017. Contains 290837 sequences.