

A056240


Smallest number whose prime divisors (taken with multiplicity) add to n.


14



2, 3, 4, 5, 8, 7, 15, 14, 21, 11, 35, 13, 33, 26, 39, 17, 65, 19, 51, 38, 57, 23, 95, 46, 69, 92, 115, 29, 161, 31, 87, 62, 93, 124, 155, 37, 217, 74, 111, 41, 185, 43, 123, 86, 129, 47, 215, 94, 141, 188, 235, 53, 329, 106, 159, 212, 265, 59, 371, 61, 177, 122
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

a(n) = index of first occurrence of n in A001414.
From David James Sycamore and Michel Marcus, Jun 16 2017, Jun 28 2017: (Start)
Recursive calculation of a(n):
For prime p, a(p) = p.
For even composite n, let P_n denote the largest prime < n1 such that nP_n is prime (except if n=6).
For odd composite n, let P_n denote the largest prime < n1 such that n3P_n is prime.
Conjecture: a(n) = Min{q*a(nq); q prime, P_n <= q < n1}.
Examples:
For n=9998, P_9998=9967, and a(9998) = Min{9973*a(25),9967*a(31)}= 9967*31=308977.
For n=875, P_875=859, and a(875) = Min{863*a(12),859*a(16)}=863*35=30205.
Note: A000040 and A288313 are both subsequences of this sequence. (End)


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 2..10000
H. Havermann, Tables of sumofprimefactors sequences (overview with links to the first 50000 sums).


EXAMPLE

a(8) = 15 because the smallest number whose prime divisors sum to 8 is 15 (3*5).


MATHEMATICA

a = Table[0, {75}]; Do[b = Plus @@ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger[n]]; If[b < 76 && a[[b]] == 0, a[[b]] = n], {n, 2, 1000}]; a (* Robert G. Wilson v, May 04 2002 *)
b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
a[n_] := For[k = 2, True, k++, If[b[k] == n, Return[k]]];
Table[a[n], {n, 2, 63}] (* JeanFrançois Alcover, Jul 03 2017 *)


PROG

(Haskell)
a056240 = (+ 1) . fromJust . (`elemIndex` a001414_list)
 Reinhard Zumkeller, Jun 14 2012
(PARI) isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]) == n;
a(n) = my(k=2); while(!isok(k, n), k++); k; \\ Michel Marcus, Jun 21 2017


CROSSREFS

Cf. A001414, A064502, A000040, A288313.
First column of array A064364, n>=2.
See A000792 for the maximal numbers whose prime factors sums up to n.
Sequence in context: A074756 A240221 A075162 * A069968 A086931 A243405
Adjacent sequences: A056237 A056238 A056239 * A056241 A056242 A056243


KEYWORD

nonn,easy


AUTHOR

Adam Kertesz, Aug 19 2000


EXTENSIONS

More terms from James A. Sellers, Aug 25 2000


STATUS

approved



