OFFSET
0,1
COMMENTS
First differences give A060995. - Jeremy Gardiner, Aug 11 2013
Binomial transform of A002203 [Bhadouria].
The binomial transform of this sequence is 2, 6, 22, 90, 386, .. = 2*A083878(n). - R. J. Mathar, Nov 10 2013
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
P. Bhadouria, D. Jhala, and B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92, sequence B_2.
Takao Komatsu, Asymmetric Circular Graph with Hosoya Index and Negative Continued Fractions, arXiv:2105.08277 [math.CO], 2021.
Youngwoo Kwon, Binomial transforms of the modified k-Fibonacci-like sequence, arXiv:1804.08119 [math.NT], 2018.
Index entries for linear recurrences with constant coefficients, signature (4,-2).
FORMULA
a(n) = 4*a(n-1) - 2*a(n-2).
a(n) = a(n-2) - a(n-1) + 2*A020727(n-1).
For n>2, a(n) = floor((2+sqrt(2))*a(n-1)).
G.f.: 2*(1-2*x)/(1-4*x+2*x^2).
From L. Edson Jeffery, Apr 08 2011: (Start)
a(n) = 2^(2*n)*(cos(Pi/8)^(2*n) + cos(3*Pi/8)^(2*n)).
a(n) = 3*a(n-1) + Sum_{k=1..(n-2)} a(k), for n>1, with a(0)=2, a(1)=4. (End)
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 8*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
MATHEMATICA
LinearRecurrence[{4, -2}, {2, 4}, 30] (* Harvey P. Dale, Jan 18 2013 *)
PROG
(PARI) a(n) = 2*real((2+quadgen(8))^n);
(Sage) [lucas_number2(n, 4, 2) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Aug 11 2000
EXTENSIONS
More terms from James A. Sellers, Aug 25 2000
STATUS
approved