OFFSET
0,2
COMMENTS
Compare g.f. to: G(x) = 1/G(-x*G(x)) when G(x) = 1/(1-x).
An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)); for example, (*) is satisfied by G(x) = 1/(1-m*x).
FORMULA
The g.f. of this sequence is the limit of the recurrence:
(*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)))/2 starting at G_0(x) = 1+2*x.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 40*x^4 + 128*x^5 + 416*x^6 + 1344*x^7 +...
Related expansions:
1/A(x) = A(-x*A(x)) = 1 - 2*x - 4*x^3 - 8*x^4 - 16*x^5 - 48*x^6 - 96*x^7 - 128*x^8 + 64*x^9 + 2048*x^10 +...
PROG
(PARI) {a(n)=local(A=1+2*x); for(i=0, n, A=(A+1/subst(A, x, -x*A^1+x*O(x^n)))/2); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 29 2012
STATUS
approved