

A056213


Primes p for which the period of reciprocal = (p1)/8.


4



41, 241, 1601, 1609, 2441, 2969, 3041, 3449, 3929, 4001, 4409, 5009, 6089, 6521, 6841, 8161, 8329, 8609, 9001, 9041, 9929, 13001, 13241, 14081, 14929, 16001, 16481, 17489, 17881, 18121, 19001, 20249, 20641, 20921, 21529, 22481, 23801
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Cyclic numbers of the eighth degree (or eighth order): the reciprocals of these numbers belong to one of eight different cycles. Each cycle has the (number minus 1)/8 digits.
From Robert Israel, Apr 02 2018: (Start)
Primes p such that A002371(A000720(p))=(p1)/8.
All terms == 1 (mod 8). (End)


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000
Index entries for sequences related to decimal expansion of 1/n


MAPLE

select(t > isprime(t) and numtheory:order(10, t) = (t1)/8, [seq(t, t=17..24000, 8)]); # Robert Israel, Apr 02 2018


MATHEMATICA

f[n_Integer] := Block[{ds = Divisors[n  1]}, (n  1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ 1]]]; Select[ Prime[ Range[4, 2700]], f[ # ] == 8 &]


CROSSREFS

Sequence in context: A201786 A167443 A098675 * A068707 A069761 A322241
Adjacent sequences: A056210 A056211 A056212 * A056214 A056215 A056216


KEYWORD

nonn,base


AUTHOR

Robert G. Wilson v, Aug 02 2000


EXTENSIONS

Edited by N. J. A. Sloane, Apr 30 2007


STATUS

approved



