The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056213 Primes p for which the period of reciprocal = (p-1)/8. 4
 41, 241, 1601, 1609, 2441, 2969, 3041, 3449, 3929, 4001, 4409, 5009, 6089, 6521, 6841, 8161, 8329, 8609, 9001, 9041, 9929, 13001, 13241, 14081, 14929, 16001, 16481, 17489, 17881, 18121, 19001, 20249, 20641, 20921, 21529, 22481, 23801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Cyclic numbers of the eighth degree (or eighth order): the reciprocals of these numbers belong to one of eight different cycles. Each cycle has the (number minus 1)/8 digits. From Robert Israel, Apr 02 2018: (Start) Primes p such that A002371(A000720(p))=(p-1)/8. All terms == 1 (mod 8). (End) LINKS Robert Israel, Table of n, a(n) for n = 1..10000 MAPLE select(t -> isprime(t) and numtheory:-order(10, t) = (t-1)/8, [seq(t, t=17..24000, 8)]); # Robert Israel, Apr 02 2018 MATHEMATICA f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 2700]], f[ # ] == 8 &] CROSSREFS Sequence in context: A201786 A167443 A098675 * A068707 A069761 A322241 Adjacent sequences:  A056210 A056211 A056212 * A056214 A056215 A056216 KEYWORD nonn,base AUTHOR Robert G. Wilson v, Aug 02 2000 EXTENSIONS Edited by N. J. A. Sloane, Apr 30 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 21:37 EDT 2020. Contains 334690 sequences. (Running on oeis4.)