

A056210


Primes p for which the period of reciprocal = (p1)/5.


7



11, 251, 1061, 1451, 1901, 1931, 2381, 3181, 3491, 3851, 4621, 4861, 5261, 6101, 6491, 6581, 6781, 7331, 8101, 9941, 10331, 10771, 11251, 11261, 11411, 12301, 14051, 14221, 14411, 15091, 15131, 16061, 16141, 16301, 16651, 16811, 16901
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Cyclic numbers of the fifth degree (or fifth order): the reciprocals of these numbers belong to one of five different cycles. Each cycle has the (number minus 1)/5 digits.
From Robert Israel, Apr 02 2018: (Start)
Primes p such that A002371(A000720(p)) = (p1)/5.
All terms == 1 (mod 10). (End)


LINKS

T. D. Noe, Table of n, a(n) for n=1..1000
Index entries for sequences related to decimal expansion of 1/n


MAPLE

select(t > isprime(t) and numtheory:order(10, t) = (t1)/5, [seq(t, t=11..17000, 10)]); # Robert Israel, Apr 02 2018


MATHEMATICA

f[n_Integer] := Block[{ds = Divisors[n  1]}, (n  1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ 1]]]; Select[ Prime[ Range[4, 2000]], f[ # ] == 5 &]


CROSSREFS

Cf. A000720, A001913, A002371, A097443, A055628, A056157, A056211A056217, A098680
Sequence in context: A167868 A238751 A098672 * A182350 A190680 A089298
Adjacent sequences: A056207 A056208 A056209 * A056211 A056212 A056213


KEYWORD

nonn,base


AUTHOR

Robert G. Wilson v, Aug 02 2000


EXTENSIONS

Entry revised by N. J. A. Sloane, Apr 30 2007


STATUS

approved



