login
A056192
a(n) = n divided by its characteristic cube divisor A056191.
6
1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 9, 73, 74, 75
OFFSET
1,2
COMMENTS
Different from A056552: e.g. a(16) = 16, while A056552(16) = 2.
LINKS
FORMULA
a(n) = n/A055229(n)^3 = n/g^3=n/ggg and n=(LL)*(ggg)*f=L^2*g^3*f=LL*a(n)^3*f, so n=L^2*(g*3)*f, where L=A000188(n)/A055229(n), f=A055231(n), g=A055231(n).
Multiplicative with a(p^e)=p^e for even e, a(p)=p, a(p^e)=p^(e-3) for odd e>1. - Vladeta Jovovic, Apr 30 2002
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 + 1/p^6 - 1/p^7) = 0.4462648652... . - Amiram Eldar, Nov 13 2022
MATHEMATICA
f[p_, e_] := If[EvenQ[e], p^e, If[e == 1, p, p^(e - 3)]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 06 2020 *)
KEYWORD
nonn,mult
AUTHOR
Labos Elemer, Aug 02 2000
STATUS
approved