|
|
A055859
|
|
a(n) and floor(a(n)/7) are both squares; i.e., squares which remain squares when written in base 7 and last digit is removed.
|
|
15
|
|
|
0, 1, 4, 9, 64, 256, 2025, 16129, 64516, 514089, 4096576, 16386304, 130576329, 1040514049, 4162056196, 33165873225, 264286471744, 1057145886976, 8424001222569, 67127723308801, 268510893235204, 2139663144659049, 17050177433963584, 68200709735854336
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Square roots of a(n) are listed in A204516, square roots of floor(a(n)/7) in A204517. - M. F. Hasler, Jan 16 2012
|
|
LINKS
|
Table of n, a(n) for n=1..24.
M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
Index to sequences related to truncating digits of squares.
|
|
FORMULA
|
a(n) = A204516(n)^2. - M. F. Hasler, Jan 16 2012
Empirical g.f.: -x^2*(9*x^8+256*x^7+64*x^6-270*x^5-764*x^4-191*x^3+9*x^2+4*x+1) / ((x-1)*(x^2+x+1)*(x^6-254*x^3+1)). - Colin Barker, Sep 15 2014
|
|
EXAMPLE
|
a(5) = 256 because 256 = 16^2 = 514 base 7 and 51 base 7 = 36 = 6^2.
|
|
CROSSREFS
|
Cf. A023110.
Sequence in context: A095175 A092396 A184877 * A162991 A062926 A069020
Adjacent sequences: A055856 A055857 A055858 * A055860 A055861 A055862
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Henry Bottomley, Jul 14 2000
|
|
STATUS
|
approved
|
|
|
|