login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055858 Coefficient triangle for certain polynomials. 11
1, 1, 2, 4, 9, 6, 27, 64, 48, 36, 256, 625, 500, 400, 320, 3125, 7776, 6480, 5400, 4500, 3750, 46656, 117649, 100842, 86436, 74088, 63504, 54432, 823543, 2097152, 1835008, 1605632, 1404928, 1229312, 1075648, 941192, 16777216, 43046721 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The coefficients of the partner polynomials are found in triangle A055864.

LINKS

Table of n, a(n) for n=0..37.

FORMULA

a(n, m)=0 if n<m; a(0, 0)=1, a(n, 0)= n^n, n >= 1, a(n, m)= n^(m-1)*(n+1)^(n-m+1), n >= m >= 1;

E.g.f. for column m: A(m, x); A(0, x)= 1/(1+W(-x)); A(1, x)= -1-diff(W(-x), x) = -1-W(-x)/((1+W(-x))*x); A(2, x)=A(1, x)-int(A(1, x), x)/x-(1/x+x); recursion: A(m, x) = A(m-1, x)-int(A(m-1, x), x)/x-((m-1)^(m-1))*(x^(m-1))/(m-1)!, m >= 3; W(x) principal branch of Lambert's function.

EXAMPLE

{1}; {1,2}; {4,9,6}; {27,64,48,36};...

Fourth row polynomial (n=3): p(3,x)= 27+64*x+48*x^2+36*x^3

MATHEMATICA

a[n_, m_] /; n < m = 0; a[0, 0] = 1; a[n_, 0] := n^n; a[n_, m_] := n^(m-1)*(n+1)^(n-m+1); Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jun 20 2013 *)

CROSSREFS

Column sequences are A000312(n), n >= 1, A055860 (A000169), A055861 (A053506), A055862-3 for m=0..4, row sums: A045531(n+1)= |A039621(n+1, 2)|, n >= 0.

Sequence in context: A104654 A011182 A063507 * A141389 A133757 A076125

Adjacent sequences:  A055855 A055856 A055857 * A055859 A055860 A055861

KEYWORD

easy,nonn,tabl

AUTHOR

Wolfdieter Lang, Jun 20 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 17 17:41 EDT 2014. Contains 240650 sequences.