login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092396 Row 2 of array in A288580. 8
1, -1, -4, 9, 64, -225, -2304, 11025, 147456, -893025, -14745600, 108056025, 2123366400, -18261468225, -416179814400, 4108830350625, 106542032486400, -1187451971330625, -34519618525593600, 428670161650355625, 13807847410237440000, -189043541287806830625, -6682998146554920960000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.

LINKS

Table of n, a(n) for n=0..22.

J. Dezert, ed., Smarandacheials (1), Mathematics Magazine for Grades 1-12, No. 4, 2004.

J. Dezert, ed., Smarandacheials (2), Mathematics Magazine for Grades 1-12, No. 4, 2004.

FORMULA

a(n) = !n!_2 = Prod_{i=0, 1, 2, ... .}_{0<|n-2i|<=n}(n-2i) = n(n-2)(n-4)... = (-1)^(Int(n+1)/2) * (n!!)^2

EXAMPLE

!3!_2 = 3(3-2)(3-4)(3-6) = 9 and !4!_2 = 4(4-2)(4-6)(4-8) = 64.

MAPLE

T:=proc(n, k) local i, p;

p:=1;

for i from 0 to floor(2*n/k) do

if n-k*i <> 0 then p:=p*(n-k*i) fi; od:

p;

end;

r:=k->[seq(T(n, k), n=0..60)]; r(2); # N. J. A. Sloane, Jul 03 2017

MATHEMATICA

T[n_, k_] := Module[{i, p = 1}, For[i = 0, i <= Floor[2n/k], i++, If[n - k i != 0, p *= (n - k i)]]; p]; T[_, 0] = 1;

Table[T[n, 2], {n, 0, 22}] (* Jean-François Alcover, Apr 05 2020, after Maple *)

CROSSREFS

Cf. A288580, A001818.

Sequence in context: A062067 A110256 A095175 * A184877 A055859 A162991

Adjacent sequences: A092393 A092394 A092395 * A092397 A092398 A092399

KEYWORD

sign

AUTHOR

J. Dezert (Jean.Dezert(AT)onera.fr), Mar 21 2004

EXTENSIONS

Entry revised by N. J. A. Sloane, Jul 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 2 21:10 EST 2023. Contains 360024 sequences. (Running on oeis4.)