login
A055218
a(n) = T(2*n+2,n), array T as in A055216.
2
1, 4, 15, 51, 168, 540, 1711, 5365, 16698, 51679, 159250, 489048, 1497681, 4576140, 13955895, 42493677, 129211818, 392441049, 1190716836, 3609608838, 10933915743, 33097421223, 100126350090, 302737691646, 914897836063
OFFSET
0,2
LINKS
FORMULA
G.f.: ((2*x-1) *sqrt(-3*x^2-2*x+1)+2*x^3-3*x+1)/ (6*x^6+x^5 +sqrt(-3*x^2-2*x+1) *(3*x^4-x^3)-4*x^4+x^3). - Vladimir Kruchinin, May 24 2014
a(n) ~ 3^(n+2)/2 * (1-3*sqrt(3)/(2*sqrt(Pi*n))). - Vaclav Kotesovec, May 24 2014
MATHEMATICA
Table[Sum[Binomial[n+2, i]*Sum[Binomial[i, j], {j, 0, n-i}], {i, 0, n+2}], {n, 0, 20}] (* Vaclav Kotesovec, May 24 2014 *)
PROG
(PARI) x='x+O('x^50); Vec(((2*x-1)*sqrt(-3*x^2-2*x+1)+2*x^3-3*x+ 1)/(6*x^6 +x^5 + sqrt(-3*x^2-2*x+1)*(3*x^4-x^3)-4*x^4+x^3)) \\ G. C. Greubel, May 23 2017
CROSSREFS
Cf. A055216.
Sequence in context: A280786 A283276 A196835 * A303843 A107307 A240365
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 07 2000
STATUS
approved