

A107307


G.f. (1x2*x^2x^3+x^4)/((x1)^3*(6*x^2+2*x1)).


0



1, 4, 15, 51, 183, 655, 2381, 8653, 31539, 114927, 419001, 1527457, 5568791, 20302171, 74016909, 269846637, 983794491, 3586668535, 13076103713, 47672218297, 173801058495, 633635426355, 2310077203221, 8421966964069
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The definition of this sequence given in the program code is, without a doubt, involved. This is in contrast to its "relatively simple" generating function (which came as a small surprise). At least in principle, it is certainly possible that a simpler definition involving floretions can be found.


LINKS

Table of n, a(n) for n=0..23.
Index entries for linear recurrences with constant coefficients, signature (5,3,11,16,6).


PROG

Floretion Algebra Multiplication Program, FAMP Code: Fortype: Type 1A Roktype: (left factor): Y[sqa.Findk()] = Y[sqa.Findk()]  Math.signum(Y[sqa.Findk()])*p (internal program code) Roktype (right factor): Do nothing. Fiztype: ChuRed (a(n)) = jessigforcycfizholrok(infty)1jessigforcycfizholrokseq[(.5'j + .5j' + e)( .5'i + .5'j  .5i' + .5j'  'kk'  .5'ik'  .5'jk'  .5'ki'  .5'kj')]


CROSSREFS

Sequence in context: A196835 A055218 A303843 * A240365 A005492 A003013
Adjacent sequences: A107304 A107305 A107306 * A107308 A107309 A107310


KEYWORD

nonn,easy


AUTHOR

Creighton Dement, May 20 2005


STATUS

approved



