login
A280786
Number of topologically distinct sets of n circles with one pair intersecting.
4
1, 4, 15, 50, 162, 506, 1558, 4727, 14227, 42521, 126506, 374969, 1108476, 3269902, 9630631, 28328999, 83251569, 244471484, 717486860, 2104777227, 6172357873, 18096097750, 53044095421, 155464365080, 455601800970, 1335107222743, 3912330438784, 11464463809180, 33595343643160
OFFSET
2,2
LINKS
R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016, row sums Table 7.
MAPLE
A280786 := proc(N)
if N < 2 then
0;
else
add(A280787(N, f), f=1..N-1) ;
end if;
end proc:
A280787 := proc(N, f)
option remember ;
local Npr, ct ;
if f = N then
return 0;
elif f = N-1 then
return 1;
elif f = 1 then
A280786(N-1)+A280788(N-2) ;
else
ct := 0 ;
for Npr from 1 to N-1 do
ct := ct+procname(Npr, 1)*A033185(N-Npr, f-1) ;
end do:
ct ;
end if;
end proc:
seq(A280786(n), n=2..30) ; # R. J. Mathar, Mar 06 2017
MATHEMATICA
a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #1*a81[#1] &], {j, n - 1}]/(n - 1)];
A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np]*a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2];
A280788[n_] := If[n == 0, 1, Sum[a81[np + 1]*A027852[n - np + 2], {np, 0, n}]];
t[n_] := t[n] = Module[{d, j}, If[n == 1, 1, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n - j], {j, 1, n - 1}]/(n - 1)]];
b[1, 1, 1] = 1;
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[t[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; A033185[n_, k_] := b[n, n, k];
A280786[n_] := If[n < 2, 0, Sum[A280787[n, f], {f, 1, n - 1}]];
A280787[n_, f_] := A280787[n, f] = Module[{ct}, Which[f == n, Return[0], f == n - 1, Return[1], f == 1, Return[A280786[n - 1] + A280788[n - 2]], True, ct = 0; Do[ct += A280787[np, 1]*A033185[n - np, f - 1], {np, 1, n - 1}]]; ct];
Table[A280786[n], {n, 2, 30}] (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar and Alois P. Heinz *)
CROSSREFS
Row sums of A280787.
Column k=1 of A261070.
Sequence in context: A026328 A014532 A094705 * A283276 A196835 A055218
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 20 2017
STATUS
approved