OFFSET
0,1
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (20, -160, 640, -1280, 1024).
FORMULA
G.f.: (5 +40*x +16*x^2)/(1-4*x)^5.
E.g.f.: (15 +360*x +1464*x^2 +1664*x^3 +512*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 22 2019
a(n) = 20*a(n-1)-160*a(n-2)+640*a(n-3)-1280*a(n-4)+1024*a(n-5). - Wesley Ivan Hurt, May 02 2021
MATHEMATICA
Table[4^n Binomial[2n+5, 4], {n, 0, 20}] (* or *) LinearRecurrence[{20, -160, 640, -1280, 1024}, {5, 140, 2016, 21120, 183040}, 20] (* Harvey P. Dale, Mar 03 2018 *)
PROG
(PARI) vector(20, n, n--; 4^n*binomial(2*n+5, 4)) \\ G. C. Greubel, Jul 22 2019
(Magma) [4^n*Binomial(2*n+5, 4): n in [0..20]]; // G. C. Greubel, Jul 22 2019
(Sage) [4^n*binomial(2*n+5, 4) for n in (0..20)] # G. C. Greubel, Jul 22 2019
(GAP) List([0..20], n-> 4^n*Binomial(2*n+5, 4)); # G. C. Greubel, Jul 22 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved