OFFSET
0,1
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (24, -240, 1280, -3840, 6144, -4096).
FORMULA
G.f.: 2*(3+4*x)*(1+12*x)/(1-4*x)^6.
E.g.f.: (2/15)*(45 +1500*x +8760*x^2 +15840*x^3 +10240*x^4 +2048*x^5) * exp(4*x). - G. C. Greubel, Jul 22 2019
MATHEMATICA
Table[4^n Binomial[2n+6, 5], {n, 0, 20}] (* or *) LinearRecurrence[{24, -240, 1280, -3840, 6144, -4096}, {6, 224, 4032, 50688, 512512, 4472832}, 20] (* Harvey P. Dale, Jul 02 2017 *)
PROG
(PARI) vector(20, n, n--; 4^n*binomial(2*n+6, 5)) \\ G. C. Greubel, Jul 22 2019
(Magma) [4^n*Binomial(2*n+6, 5): n in [0..20]]; // G. C. Greubel, Jul 22 2019
(Sage) [4^n*binomial(2*n+6, 5) for n in (0..20)] # G. C. Greubel, Jul 22 2019
(GAP) List([0..20], n-> 4^n*Binomial(2*n+6, 5)); # G. C. Greubel, Jul 22 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved