login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054322 Fourth unsigned column of Lanczos triangle A053125 (decreasing powers). 3
4, 80, 896, 7680, 56320, 372736, 2293760, 13369344, 74711040, 403701760, 2122317824, 10905190400, 54962159616, 272461987840, 1331439861760, 6425271074816, 30666066493440, 144929376436224, 678948430151680 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.

Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (16,-96,256,-256).

FORMULA

a(n) = 4^n*binomial(2*n+4, 3) = -A053125(n+3, 3) = 4*A054329(n).

G.f.: 4*(1+4*x)/(1-4*x)^4.

E.g.f.: (4/3)*(3 +48*x +120*x^2 +64*x^3)*exp(4*x). - G. C. Greubel, Jul 22 2019

MATHEMATICA

Table[4^n*Binomial[2*n+4, 3], {n, 0, 20}] (* G. C. Greubel, Jul 22 2019 *)

PROG

(PARI) vector(20, n, n--; 4^n*binomial(2*n+4, 3)) \\ G. C. Greubel, Jul 22 2019

(MAGMA) [4^n*Binomial(2*n+4, 3): n in [0..20]]; // G. C. Greubel, Jul 22 2019

(Sage) [4^n*binomial(2*n+4, 3) for n in (0..20)] # G. C. Greubel, Jul 22 2019

(GAP) List([0..20], n-> 4^n*Binomial(2*n+4, 3)); # G. C. Greubel, Jul 22 2019

CROSSREFS

Cf. A053125, A053123, A002700, A054329.

Sequence in context: A093854 A269146 A192834 * A114488 A055787 A132584

Adjacent sequences:  A054319 A054320 A054321 * A054323 A054324 A054325

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 00:25 EST 2019. Contains 329083 sequences. (Running on oeis4.)