login
A054322
Fourth unsigned column of Lanczos triangle A053125 (decreasing powers).
3
4, 80, 896, 7680, 56320, 372736, 2293760, 13369344, 74711040, 403701760, 2122317824, 10905190400, 54962159616, 272461987840, 1331439861760, 6425271074816, 30666066493440, 144929376436224, 678948430151680
OFFSET
0,1
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
FORMULA
a(n) = 4^n*binomial(2*n+4, 3) = -A053125(n+3, 3) = 4*A054329(n).
G.f.: 4*(1+4*x)/(1-4*x)^4.
E.g.f.: (4/3)*(3 +48*x +120*x^2 +64*x^3)*exp(4*x). - G. C. Greubel, Jul 22 2019
MATHEMATICA
Table[4^n*Binomial[2*n+4, 3], {n, 0, 20}] (* G. C. Greubel, Jul 22 2019 *)
LinearRecurrence[{16, -96, 256, -256}, {4, 80, 896, 7680}, 20] (* Harvey P. Dale, Mar 27 2023 *)
PROG
(PARI) vector(20, n, n--; 4^n*binomial(2*n+4, 3)) \\ G. C. Greubel, Jul 22 2019
(Magma) [4^n*Binomial(2*n+4, 3): n in [0..20]]; // G. C. Greubel, Jul 22 2019
(Sage) [4^n*binomial(2*n+4, 3) for n in (0..20)] # G. C. Greubel, Jul 22 2019
(GAP) List([0..20], n-> 4^n*Binomial(2*n+4, 3)); # G. C. Greubel, Jul 22 2019
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved