OFFSET
0,2
COMMENTS
p divides a((p-3)/2) for p in A045468 (primes congruent to {1, 4} mod 5). - Alexander Adamchuk, Jul 05 2006
The sequence 1,1,5,15,55,... has general term sum{k=0..n, (-1)^(n-k)*C(2k,k)}. Its Hankel transform is A082761. - Paul Barry, Apr 10 2007
From Paul Barry, Mar 29 2010: (Start)
The sequence 1,1,5,15,... has g.f. 1/((1+x)*sqrt(1-4x)).
The doubled sequence 1,1,1,1,5,5,... has e.g.f. dif(int((sin(x-t)+cos(x-t))*Bessel_I(0,2t),t,0,x),x). (End)
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = C(2n, n) - a(n-1) with a(0)=1. - Labos Elemer, Apr 26 2003
C(2n,n) - C(2n-2,n-1) + ... +(-1)^(k+n)*C(2k,k)+ ... + (-1)^(1+n)*C(2,1) + (-1)^n*C(0,0), where C(2k,k)=(2k)!/(k!)^2 - central binomial coefficients A000984[k]. - Alexander Adamchuk, Jul 05 2006
a(n) = Sum_{k=0..n} (-1)^(k+n)*((2k)!/(k!)^2). - Alexander Adamchuk, Jul 05 2006
G.f.: (1/sqrt(1-4*x)/(1+x)-1)/x = (-1 + 2/(U(0)-2*x))/(1+x) where U(k)= 2*(2*k+1)*x + (k+1) - 2*(k+1)*(2*k+3)*x/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jun 27 2012
a(n) ~ 2^(2*n+4)/(5*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 06 2012
Recurrence: (n+1)*a(n) = (3*n+1)*a(n-1) + 2*(2*n+1)*a(n-2). - Vaclav Kotesovec, Nov 06 2012
MATHEMATICA
Table[Sum[(-1)^(k+n)*((2k)!/(k!)^2), {k, 0, n}], {n, 1, 50}] (* Alexander Adamchuk, Jul 05 2006 *)
CoefficientList[Series[(1/Sqrt[1-4*x]/(1+x)-1)/x, {x, 0, 20}], x]
(* or *)
Table[(-1)^(n+1)*Sum[(-1)^k*Binomial[2*k, k], {k, 0, n+1}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2012 *)
Round@Table[Binomial[2 (n + 2), n + 2] Hypergeometric2F1[1, n + 5/2, n + 3, -4] - (-1)^n/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
PROG
(PARI) a(n)=(-1)^(n+1)*sum(k=0, n+1, (-1)^k*binomial(2*k, k))
(Python)
from math import comb
def A054108(n): return (1 if n % 2 else -1)*sum((-1 if k % 2 else 1)*comb(2*k, k) for k in range(n+2)) # Chai Wah Wu, Jan 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Formula from Benoit Cloitre, Sep 29 2002
Definition corrected by Vaclav Kotesovec, Nov 06 2012
STATUS
approved