login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053795
Composite numbers ending in 1, 3, 7 or 9.
4
9, 21, 27, 33, 39, 49, 51, 57, 63, 69, 77, 81, 87, 91, 93, 99, 111, 117, 119, 121, 123, 129, 133, 141, 143, 147, 153, 159, 161, 169, 171, 177, 183, 187, 189, 201, 203, 207, 209, 213, 217, 219, 221, 231, 237, 243, 247, 249, 253, 259, 261, 267, 273, 279, 287
OFFSET
1,1
COMMENTS
Composite numbers not divisible by 2 or 5. - Lekraj Beedassy, Jul 05 2004
Composite numbers ending in 1, 3, 7 or 9 are values (some shared within sets, because some values are numbers with multiple factors) of the following sets of binomial products:
{(10x+3)*(10y+7), (10x+9)*(10y+9), (10x+11)*(10y+11)}, {(10x+3)*(10y+11), (10x+7)*(10y+9)},
{(10x+3)*(10y+9), (10x+7)*(10y+11)}, and
{(10x+3)*(10y+3), (10x+7)*(10y+7), (10x+9)*(10y+11)}, with x, y integers >= 0. - Marvin Y. Hubble, Jul 12 2013 and May 12 2014 and Sep 27 2019
LINKS
FORMULA
a(n) = 2.5n + 2.5n/log n + O(n/log^2 n). - Charles R Greathouse IV, Jan 30 2018
MAPLE
remove(isprime, [seq(seq(10*i+j, j=[3, 7, 9, 11]), i=0..100)]); # Robert Israel, Jan 29 2018
MATHEMATICA
Select[Range[300], CompositeQ[#]&&OddQ[#]&&!Divisible[#, 5]&] (* Harvey P. Dale, Jul 13 2014 *)
PROG
(PARI) is(n)=gcd(n, 10)==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Jan 30 2018
(Python)
from sympy import isprime
def ok(n): return n > 1 and n%10 in {1, 3, 7, 9} and not isprime(n)
print(list(filter(ok, range(2, 288)))) # Michael S. Branicky, Sep 21 2021
CROSSREFS
Subsequence of A045572.
Sequence in context: A338909 A173456 A192192 * A100490 A173250 A128462
KEYWORD
nonn,base,easy
AUTHOR
G. L. Honaker, Jr., Apr 01 2000
EXTENSIONS
More terms from James A. Sellers, Apr 08 2000
Offset corrected by Arkadiusz Wesolowski, Dec 18 2011
STATUS
approved