This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053797 Lengths of successive gaps between squarefree numbers. 8
 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Peter Kagey, Table of n, a(n) for n = 1..10000 M. Filaseta and O. Trifonov, On Gaps between Squarefree Numbers. In Analytic Number Theory, Vol 85, 1990, Birkhauser, Basel, pp. 235-253. E. Fogels, On the average values of arithmetic functions, Proc. Cambridge Philos. Soc. 1941, 37: 358-372. L. Marmet, First occurrences of squarefree gaps... L. Marmet, First occurrences of square-free gaps and an algorithm for their computation, arXiv preprint arXiv:1210.3829 [math.NT], 2012. - From N. J. A. Sloane, Jan 01 2013 K. F. Roth, On the gaps between squarefree numbers, J. London Math. Soc. 1951 (2) 26:263-268. EXAMPLE The first gap is at 4 and has length 1; the next starts at 8 and has length 2 (since neither 8 nor 9 are squarefree). MAPLE SF:= select(numtheory:-issqrfree, [\$1..1000]): map(`-`, select(`>`, SF[2..-1]-SF[1..-2], 1), 1); # Robert Israel, Sep 22 2015 MATHEMATICA ReplaceAll[Differences[Select[Range@384, SquareFreeQ]] - 1, 0 -> Nothing] (* Michael De Vlieger, Sep 22 2015 *) CROSSREFS Gaps between terms of A005117. Cf. A005117, A053806. Sequence in context: A001179 A001876 A033182 * A254011 A002635 A275806 Adjacent sequences:  A053794 A053795 A053796 * A053798 A053799 A053800 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Apr 07 2000 EXTENSIONS Offset set to 1 by Peter Kagey, Sep 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 22:08 EDT 2019. Contains 326109 sequences. (Running on oeis4.)