OFFSET
1,1
COMMENTS
Cototients of prime powers do not remain always prime powers, but are primes if their exponent is 2.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..16384
Michael De Vlieger, Log log scatterplot of a(n) n = 1..2^20, showing even a(n) in blue, 3 | a(n) in green, and prime a(n) in red, else black.
EXAMPLE
The 10th pure power of prime (but not a prime) is 81, so a(10) = 81 - EulerPhi(81) = 81 - 54 = 27. For n=p^2, a(n)=p.
MATHEMATICA
Map[# - EulerPhi@ # &, Select[Range[16200], And[! PrimeQ@ #, PrimePowerQ@ #] &]] (* Michael De Vlieger, Jun 11 2018 *)
With[{nn = 2^14}, Map[Times @@ Map[#1^(#2 - 1) & @@ FactorInteger[#][[1]]] &, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], PrimePowerQ] ] ] (* Michael De Vlieger, Mar 11 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 03 2000
STATUS
approved