login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053650 Cototient function of n^2. 9
0, 2, 3, 8, 5, 24, 7, 32, 27, 60, 11, 96, 13, 112, 105, 128, 17, 216, 19, 240, 189, 264, 23, 384, 125, 364, 243, 448, 29, 660, 31, 512, 429, 612, 385, 864, 37, 760, 585, 960, 41, 1260, 43, 1056, 945, 1104, 47, 1536, 343, 1500, 969, 1456, 53, 1944, 825, 1792, 1197 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Seems to be invertible like n*Phi(n). Compare with A002618, A038040.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = n*(n - phi(n)) = n^2 - n*phi(n) = Cototient(n^2) = A051953(A000290(n)).

a(n) = n^2 - A002618(n).

For p prime, Cototient(p)=1 and a(p)=p.

a(n) = n*cototient(n) = n*A051953(n). - Omar E. Pol, Nov 22 2012

Dirichlet g.f.: zeta(s-2)*(1 - 1/zeta(s-1)). - Ilya Gutkovskiy, Jul 26 2016

MATHEMATICA

Table[n(n-EulerPhi[n]), {n, 60}] (* Michael De Vlieger, Jul 26 2016 *)

PROG

(PARI) a(n) = n^2 - eulerphi(n^2) \\ Michel Marcus, Jul 27 2013

(Haskell)

a053650 = a051953 . a000290  -- Reinhard Zumkeller, Jan 21 2014

(MAGMA) [n*(n-EulerPhi(n)): n in [1..60]]; // Vincenzo Librandi, Jul 27 2016

(Sage) [n*(n - euler_phi(n)) for n in (1..60)] # G. C. Greubel, May 18 2019

(GAP) List([1..60], n-> n*(n- Phi(n)) ); # G. C. Greubel, May 18 2019

CROSSREFS

Cf. A000005, A038040.

Cf. A001248, A002618, A053650, A053192, A053193, A036689.

Sequence in context: A062956 A333375 A289667 * A119794 A117987 A091136

Adjacent sequences:  A053647 A053648 A053649 * A053651 A053652 A053653

KEYWORD

nonn,look

AUTHOR

Labos Elemer, Feb 18 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 25 00:01 EDT 2020. Contains 338010 sequences. (Running on oeis4.)