login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052927 Expansion of 1/(1-4*x-x^3). 2
1, 4, 16, 65, 264, 1072, 4353, 17676, 71776, 291457, 1183504, 4805792, 19514625, 79242004, 321773808, 1306609857, 5305681432, 21544499536, 87484608001, 355244113436, 1442520953280, 5857568421121, 23785517797920, 96584592144960, 392195937000961 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A transform of A000302 under the mapping mapping g(x) -> (1/(1-x^3)) * g(x/(1-x^3)). - Paul Barry, Oct 20 2004

a(n) equals the number of n-length words on {0,1,2,3,4} such that 0 appears only in a run which length is a multiple of 3. - Milan Janjic, Feb 17 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 913

Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.

Index entries for linear recurrences with constant coefficients, signature (4,0,1).

FORMULA

G.f.: 1/(1-4*x-x^3).

a(n) = 4*a(n-1) + a(n-3), with a(0)=1, a(1)=4, a(2)=16.

a(n) = Sum_{r=RootOf(-1+4*z+z^3)} (1/283)*(64 + 9*r + 24*r^2)*r^(-1-n).

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*4^(n-3*k). - Paul Barry, Oct 20 2004

MAPLE

spec:= [S, {S=Sequence(Union(Z, Z, Z, Z, Prod(Z, Z, Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

seq(coeff(series(1/(1-4*x-x^3), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 17 2019

MATHEMATICA

CoefficientList[Series[1/(1-4x-x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{4, 0, 1}, {1, 4, 16}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)

PROG

(MAGMA) I:=[1, 4, 16]; [n le 3 select I[n] else 4*Self(n-1)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!( 1/(1-4*x-x^3))); // Marius A. Burtea, Oct 18 2019

(PARI) my(x='x+O('x^30)); Vec(1/(1-4*x-x^3)) \\ G. C. Greubel, Oct 17 2019

(Sage)

def A052927_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( 1/(1-4*x-x^3) ).list()

A052927_list(30) # G. C. Greubel, Oct 17 2019

(GAP) a:=[1, 4, 16];; for n in [4..30] do a[n]:=4*a[n-1]+a[n-3]; od; a; # G. C. Greubel, Oct 17 2019

CROSSREFS

Cf. A099503.

Sequence in context: A033140 A181879 A243872 * A012781 A132820 A165201

Adjacent sequences:  A052924 A052925 A052926 * A052928 A052929 A052930

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 04:44 EST 2019. Contains 329248 sequences. (Running on oeis4.)