login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052929 Expansion of (2-3*x-x^2)/((1-x^2)*(1-3*x)). 1
2, 3, 10, 27, 82, 243, 730, 2187, 6562, 19683, 59050, 177147, 531442, 1594323, 4782970, 14348907, 43046722, 129140163, 387420490, 1162261467, 3486784402, 10460353203, 31381059610, 94143178827, 282429536482, 847288609443, 2541865828330, 7625597484987 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 915

Index entries for linear recurrences with constant coefficients, signature (3,1,-3)

FORMULA

G.f.: -(-2+3*x+x^2)/(-1+x^2)/(-1+3*x).

Recurrence: {a(1)=3, a(2)=10, a(0)=2, -3*a(n)-2*a(n+1)+a(n+2)+2=0}

a(n) = 3^n+Sum(1/2*_alpha^(-n), _alpha=RootOf(-1+_Z^2)).

a(n) = 2*A033113(n+1)-3*A033113(n) -A033113(n-1). - R. J. Mathar, Nov 28 2011

a(n) = 3^n + (1+(-1)^n)/2. [Bruno Berselli, Aug 27 2013]

a(n) = Sum_{k=0..n} (-1)^k + 2^k*binomial(n,k). [Bruno Berselli, Aug 27 2013]

MAPLE

spec := [S, {S=Union(Sequence(Prod(Z, Z)), Sequence(Union(Z, Z, Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

Table[3^n + (1 + (-1)^n)/2, {n, 0, 30}] (* Bruno Berselli, Aug 27 2013 *)

LinearRecurrence[{3, 1, -3}, {2, 3, 10}, 40] (* Vincenzo Librandi, Mar 09 2018 *)

PROG

(MAGMA) [&+[(-1)^k+2^k*Binomial(n, k): k in [0..n]]: n in [0..30]]; // Bruno Berselli, Aug 27 2013

(PARI) x='x+O('x^99); Vec((2-3*x-x^2)/((1-x^2)*(1-3*x))) \\ Altug Alkan, Mar 09 2018

CROSSREFS

Cf. A052531: 2^n+(1+(-1)^n)/2.

Sequence in context: A303836 A238937 A278088 * A151415 A134588 A000060

Adjacent sequences:  A052926 A052927 A052928 * A052930 A052931 A052932

KEYWORD

nonn,easy

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 05 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 19:40 EST 2019. Contains 320376 sequences. (Running on oeis4.)